
574

N
N

T
:2

02
3I

P
PA

G
01

3

Contributions to high-dimensional,
infinite-dimensional and nonlinear

statistics
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Chapter 1

Introduction

Three topics are explored in this thesis: inference in high-dimensional multi-task re-
gression, geometric quantiles in infinite-dimensional Banach spaces, and convex Fréchet
ℓ-means in metric trees. These topics are not unrelated with one another; we will
see later in the introduction that they are bound by the thread of inference in M -
estimation. Each topic has a dedicated chapter in the manuscript; the following in-
troduction provides a broad overview for each theme, its goal is to provide important
context and background information. We warn the reader that notation may change
between chapters.

1.1 High-dimensional sparse multi-task regression

1.1.1 The Lasso and debiasing

In the linear Gaussian regression model with n observations (x1, y1), . . . , (xn, yn), each
response yi ∈ R is a linear function of the feature vector xi ∈ Rp, contaminated by a
Gaussian noise ϵi

i.i.d.∼ N (0, σ2):

yi = x⊤
i β

∗ + ϵi,

with β∗ ∈ Rp being the unknown coefficient vector. Let y = (y1, . . . , yn)
⊤, ε =

(ϵ1, . . . , ϵn)
⊤ and X denote the design matrix with rows x⊤

1 , . . . ,x
⊤
n (which may be

fixed or random). The model rewrites in matrix form as

y = Xβ∗ + ε.

In the low-dimensional setting where p ≤ n and X has full rank, a classical estima-
tor of β∗ is the ordinary least-squares estimator β̂

(ols)
= (X⊤X)−1X⊤y, which solves

the least-squares optimization problem

argmin
β∈Rp

1

2n
∥y −Xβ∥22.

β̂
(ols)

is an unbiased estimator of β∗ and its distribution is Np(0, σ
2(X⊤X)−1). This

enables statistical inference on β∗, i.e., hypothesis testing or the construction of confi-
dence intervals and confidence regions for coefficients of β∗ [8].

8



CHAPTER 1. INTRODUCTION

The high-dimensional setting where the number of covariates p can be much larger
than n has attracted considerable attention in the last two decades. In this setting, the
matrix X⊤X is not invertible and this calls for the introduction of other estimators.
When it is believed that only a subset of the covariates contribute to the response, i.e.,
when the coefficient vector β∗ is s-sparse, an appropriate estimator is the Lasso [251]
β̂

(L)
which solves the penalized minimization problem

argmin
β∈Rp

1

2n
∥y −Xβ∥22 + λ∥β∥1,

where λ > 0 is a regularization parameter chosen by the user.
The performance of the Lasso for prediction, estimation and support recovery has

been extensively studied in the 2000s; see, e.g., [106, 56, 35, 188, 282, 268]. These
results are foundational, and yet they are insufficient for statistical inference on low-
dimensional functions of β∗, e.g., for inference on a single coefficient. For instance,
oracle inequalities [269, Equation (7.26)] yield confidence intervals for β∗

1 of size ≍√
(s log p)/n, which is far from optimal. Besides, β̂

(L)
does not have a tractable limit

distribution, even in the low dimensional setting [153].
In contrast with the least-squares estimator, the Lasso is provably biased [139,

Corollary 11] and the bias is greater for coefficients of β∗ with large magnitude. This
has motivated the construction of other estimators based on β̂

(L)
which may have nicer

inferential properties.
In the 2010s, under the assumption of random design with i.i.d. rows having covari-

ance Σ, a first line of research [280, 51, 256, 139] introduced debiased estimators β̂
(d)

of
the form β̂

(d)
= β̂

(L)
+ 1

n
MX⊤(y−Xβ̂

(L)
) where M ∈ Rp×p is chosen as an estimate

of the precision matrix Σ−1. By leveraging β̂
(d)

, these works develop confidence inter-
vals for single coefficients of β∗ and in the regime s ≲

√
n/ log p. [141] extended the

sparsity requirement to s ≲ n/(log p)2, [284, 42, 54, 55, 285, 26] construct confidence
intervals for general linear functionals a⊤β∗ where a ∈ Rp. Most recently, [193, 26, 27]
establish the need for a degrees-of-freedom adjustment to deal with larger sparsity: M
should ideally be chosen as Σ−1/(1− ∥β̂(L)∥0/n).

1.1.2 Group Lasso and multi-task regression

A more general structure assumption on the parameter vector β∗ is group-sparsity: the
set of feature indices [1, p] is partitioned into m groups G1, . . . , Gm ⊂ [1, p] known a
priori and there are only few indices k ∈ [1,m] such that {β∗

j : j ∈ Gk} ̸= {0}. Inside
a group, it is therefore understood that either all the covariates are relevant, or they
are all simultaneously excluded.

An appropriate estimator in this case is the Group Lasso [275] β̂
(g)

which solves
the minimization problem penalized by the ℓ2,1 norm ∥β∥2,1 =

∑m
k=1

(∑
j∈Gk

β2
j

)1/2:
argmin

β∈Rp

1

2n
∥y −Xβ∥22 + λ∥β∥2,1.

9



CHAPTER 1. INTRODUCTION

The prediction and estimation performance of the estimator were analyzed in [201, 130,
174]. The aforementioned debiasing methodology was extended to the group setting in
[187, 194, 255, 242, 27].

A problem related to group-sparse estimation is that of sparse multi-task regression.
We consider the multivariate Gaussian linear model with T responses or tasks

Y = XB∗ +E

where B∗ ∈ Rp×T , Y ∈ Rn×T and E has i.i.d. NT (0,S) rows. The structural assump-
tion is that B∗ is row-sparse, i.e., there are many features that are irrelevant across all
tasks. Multi-task regression can be recast as group-sparse regression

ȳ = X̄β̄
∗
+ ε̄

where ȳ = vec(Y ) ∈ Rn̄, ε̄ = vec(E) ∈ Rn̄, X̄ ∈ Rn̄×p̄ is block-diagonal with blocks
of X, p̄ = pT , n̄ = nT and the features {1, ..., p̄} are partitioned into p groups with
equal sizes.

The block-diagonal design X̄ is an obstacle that precludes straightforward appli-
cation of inference results for the Group Lasso. Inference in the multi-task regression
model has been taken on in [67], which extends the debiasing methodology of [280, 256].

1.1.3 Summary of our results

Chapter 3 is based on Bellec and Romon [23], which is currently under review.
The inferential goals of the chapter are twofold. First, we construct valid confidence

intervals for a linear functional a⊤B∗e1 of the unknown coefficient on the first task, by
leveraging responses on all tasks simultaneously. Second, we construct valid confidence
ellipsoids for rows e⊤

j B
∗ ∈ R1×T of the unknown coefficient matrix B∗, for instance to

provide hypothesis tests on the nullity of the j-th row of B∗, or equivalently testing
that the signal does not depend on the j-th covariate.

In order to achieve these statistical goals, we introduce a new object, the data-
driven symmetric interaction matrix Â ∈ RT×T . Introduction of the matrix Â is key
to equip the estimator B̂ with the aforementioned inference capabilities. This data-
driven matrix Â generalizes, to the multi-task setting, the effective degrees-of-freedom
and other scalar adjustments in single-task linear models.

While previous proposals in grouped-variables regression require row-sparsity s ≲√
n up to constants depending on T and logarithmic factors in (n, p) for unknown Σ,

the debiasing scheme using the interaction matrix provides confidence intervals and χ2
T

confidence ellipsoids under the conditions min(T 2, log8 p)/n→ 0 and

sT + s log(p/s) + ∥Σ−1ej∥0 log p
n

→ 0,
min(s, ∥Σ−1ej∥0)√

n

√
[T + log(p/s)] log p→ 0,

allowing for row-sparsity s≫
√
n when ∥Σ−1ej∥0

√
T ≪

√
n up to logarithmic factors.

10



CHAPTER 1. INTRODUCTION

1.2 M-estimation, infinite dimension and geometric
quantiles

The ordinary least-squares, Lasso and Group Lasso estimators introduced in the pre-
vious section are defined as solutions of a minimization problem. This is a particular
instance of M -estimation, on which we focus next.

1.2.1 M-estimation: classical results

A population parameter θ⋆ is often defined in an implicit fashion as a minimizer of an
objective function ϕ of the following type:

ϕ : Θ → R

θ 7→
∫
X
φ(x, θ)dµ(x), (1.1)

where Θ is the parameter space, (X ,A, µ) is a probability space and φ : X × Θ → R
is a contrast function that is integrable in the first argument. Given an i.i.d. sample
X1, . . . , Xn ∼ µ, an M -estimator θ̂n of θ⋆ is defined as a minimizer of the empirical
objective function ϕ̂n

ϕ̂n : θ 7→ 1

n

n∑
i=1

φ(Xi, θ), (1.2)

which is obtained by replacing the unknown population measure µ in (1.1) with the
empirical measure µ̂n = 1

n

∑n
i=1 δXi

.
The random elements X1, X2, . . . are defined on a probability space (Ω,F ,P). To

simplify the exposition we will not dwell on measurability issues in this introduction.
We assume therefore from the outset that θ̂n is measurable between the σ-algebras F
and A.

This general framework of estimation was first formulated by Huber [131], who used
the letter “M” as a shorthand for “minimize”. Classical examples of M -estimation in
the Euclidean setting (i.e., Θ is a subset of the Euclidean space Rd, which has the
standard Hilbert structure given by the dot product) include the case where:

1. Θ = X = Rd with d ≥ 1, µ is a Borel probability measure with finite first moment
and φ : (x, θ) 7→ ∥x− θ∥22 − ∥x∥22. Here θ⋆ is the mean of µ, i.e., θ⋆ =

∫
Rd xdµ(x)

and θ̂n is the sample mean: θ̂n = 1
n

∑n
i=1Xi.

2. Θ = X = R, µ is a Borel probability measure and φ : (x, θ) 7→ |x − θ| − |x|.
The (possibly infinitely many) minimizers of ϕ are the medians of µ and the
minimizers of ϕ̂n are the usual sample medians, which are expressed in terms
of the order statistics X(1) ≤ . . . ≤ X(n): when n is odd X(⌊n

2
⌋+1) is the unique

sample median, and when n is even the argmin set is the interval [X(n
2
), X(n

2
+1)].

3. Θ = X = R, µ is a Borel probability measure with finite first moment and
φ : (x, θ) 7→ (x− θ)21|x−θ|≤c + (2c|x− θ| − c2)1|x−θ|>c where c ≥ 0. This contrast
function was introduced by Huber [131] for robustness purposes.
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4. Θ ⊂ Rd with d ≥ 1, µ is contained in a parametric family (Pθ)θ∈Θ (i.e., µ = Pθ0

for some θ0 ∈ Θ), the family is dominated by a sigma-finite measure ν, the
corresponding densities (fθ)θ∈Θ are positive ν-a.e., for each θ ∈ Θ,∫

X
| ln fθ(x)|fθ0(x)dν(x) <∞

and φ : (x, θ) 7→ − ln fθ(x). Any minimizer θ⋆ verifies Pθ⋆ = µ and it is unique if
and only if the family (Pθ)θ∈Θ is identifiable. Minimization of ϕ̂n coincides with
the classical maximum likelihood estimation.

5. Θ = Rd, X = Rd+1 with d ≥ 1, µ is a Borel probability measure with finite
second moment, the random vector (X, Y ) ∼ µ satisfies E[Y |X] = θ⊤0 X for some
θ0 ∈ Rd and φ :

(
(x, y), θ

)
7→ (y− θ⊤x)2. In that case, M -estimation is the same

as ordinary least-squares.

Consistency, rate of convergence and limit distribution

Assume that ϕ has a unique minimizer θ⋆ which is the parameter of interest. A first step
towards successful estimation of θ⋆ is the consistency of the sequence (θ̂n)n≥1, i.e., some
form of stochastic convergence to θ⋆. To quantify this behavior we require from now on
that Θ be a metric space with metric d, and we say that (θ̂n)n≥1 is strongly consistent
(resp., weakly consistent) if d(θ̂n, θ⋆) converges almost surely (resp., in probability) to
0.

Given the generality of the estimation framework (1.1), statisticians have strived to
establish general consistency results that encompass a wide range of contrast functions
φ. The following textbook consistency conditions are given in [261, 259].

Proposition 1.1 ([261, Corollary 3.2.3], [259, Theorem 5.7]). 1. If

sup
θ∈Θ

|ϕ̂n(θ)− ϕ(θ)| P−−−→
n→∞

0 (1.3)

and
∀ε > 0, inf

θ∈Θ
∥θ−θ⋆∥≥ε

ϕ(θ) > ϕ(θ⋆), (1.4)

then (θ̂n)n≥1 is weakly consistent.

2. If (1.3) is replaced with uniform convergence over compact sets, if (1.4) holds
and assuming

∀ε > 0,∃Kcompact ,∀n ≥ 1, P(θ̂n ∈ K) ≥ 1− ε,

then (θ̂n)n≥1 is weakly consistent.

Proposition 1.2 ([259, Theorem 5.14]). If θ 7→ φ(x, θ) is lower semicontinuous for
µ-almost every x and ∀θ ∈ Θ,∃r > 0,E

[
inf
α∈Θ

∥α−θ∥≥r

φ(X1, α)
]
< ∞, then for every ε > 0

and every compact K ⊂ Θ,

P
(
{d(θ̂n, θ⋆) ≥ ε} ∩ {θ̂n ∈ K}

)
−−−→
n→∞

0. (1.5)

12
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Let us comment briefly on these results. The stochastic uniform convergence condi-
tion (1.3) is equivalent to the class of functions

(
φ(·, θ)

)
θ∈Θ being µ-Glivenko–Cantelli.

This can be ascertained using tools from the theory of empirical processes, such as
bracketing and random L1-entropy numbers [261, Part 2]. For example, the class is
Glivenko–Cantelli if it is pointwise compact, meaning that it is dominated by an inte-
grable function, that Θ is a compact metric space and θ 7→ φ(x, θ) is continuous for
every x ∈ X [259, Example 19.8].

Under condition (1.4), if θ is separated away from θ⋆ then ϕ(θ) cannot get arbitrarily
close to the minimum value of ϕ. In that case the minimizer θ⋆ is said to be “well-
separated”. Assuming that ϕ is lower semicontinuous and Θ is a compact metric
space, θ⋆ is automatically well-separated. The convergence statement (1.5) yields weak
consistency if one can exhibit a compact subset K such that limn→∞ P(θ̂n ∈ K) = 1.

Upon this discussion, it appears that the compact subsets of Θ as well as the com-
pactness of Θ itself play a role in establishing consistency. Further general conditions
can be found in [132, 212, 120, 83]. They are similar in spirit to the ones displayed
previously and rely also on compactness.

After consistency is obtained, it is interesting to quantify the rate of convergence,
i.e., finding a sequence of positive reals (rn)n≥1 such that limn rn = ∞ and rnd(θ̂n, θ⋆) =
OP(1). A general result for this purpose is [261, Corollary 3.2.6], which requires that
ϕ grows at least locally quadratically, i.e., ϕ(θ) ≥ ϕ(θ⋆) + cd(θ, θ⋆)

2 for some constant
c > 0 and every θ in some neighborhood of θ⋆, and that there is some control of the
empirical process indexed by the class Mδ = {φ(·, θ) − φ(·, θ⋆) : d(θ, θ⋆) < δ} where
δ ranges in a neighborhood of 0. The growth condition easily follows when Θ is a
Euclidean space and ϕ is twice-differentiable at θ⋆ with nonsingular Hessian matrix
∇2ϕ(θ⋆). The second condition can be verified by bounding a uniform-entropy integral
or a bracketing integral of Mδ. In the special case where Θ is Euclidean and the contrast
is Hölder continuous in the second variable, i.e., for every θ1, θ2 in a neighborhood of
θ⋆ and µ-almost every x ∈ X ,

|φ(x, θ1)− φ(x, θ2)| ≤ C(x)∥θ1 − θ2∥α, (1.6)

the bracketing integral of Mδ is easily bounded using the covering numbers of balls in
Rd. In practice, to obtain a rate of convergence it is therefore convenient that Θ be a
Euclidean space. In non-Euclidean spaces such as infinite-dimensional normed spaces,
it is sometimes appropriate to consider a sieved M -estimator instead of θ̂n: given an
increasing sequence of subsets Θn ⊂ Θ, minimization is carried over Θn instead of the
whole parameter space. Sieved M -estimation can be seen as a form of regularization,
which may help avoid overfitting. Rates for sieved M -estimators are found in [261,
Chapter 3.4].

The rate rn has the correct order if additionally
(
rnd(θ̂n, θ⋆)

)
n≥1

converges in dis-
tribution. Generic results of this kind are usually stated in the setting where Θ is
a Euclidean space. Such a result is [261, Theorem 3.2.10], which leverages empirical
process theory. Another one based on linearization is [261, Theorem 3.2.16], which has
the more precise conclusion rn(θ̂n − θ⋆) = −[∇2ϕ(θ⋆)]

−1Zn + oP(1) where (Zn)n≥1 is a
tight sequence of random vectors. It is often (but not always, see [151]) the case that
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rn =
√
n and the stochastic expansion is explicit:

√
n(θ̂n − θ⋆) = −[∇2ϕ(θ⋆)]

−1 1√
n

n∑
i=1

∇θφ(Xi, θ⋆) + oP(1). (1.7)

The central limit theorem implies that
√
n(θ̂n − θ⋆) is asymptotically normal: it

converges in distribution to a centered multivariate normal with covariance matrix
[∇2ϕ(θ⋆)]

−1E
[
∇θφ(X1, θ⋆)∇θφ(X1, θ⋆)

⊤][∇2ϕ(θ⋆)]
−1. This holds for example when the

contrast satisfies (1.6) with α = 1 [261, Example 3.2.22]. Further results along the
same lines can be found in [132, 214, 215].

The convex case

The following setting is common: Θ is an open convex subset of Rd and the contrast is
convex in the second argument, i.e., for µ-almost every x ∈ X , the function θ 7→ φ(x, θ)
is convex. Convexity greatly simplifies the statements of consistency and asymptotic
normality, as observed in [108, 199, 119].

Proposition 1.3 ([108, Theorem 5.1],[199, Theorem 1]). Under the convexity assump-
tion, (θ̂n)n≥1 is strongly consistent.

Proposition 1.4 ([199, Theorem 4]). For each x ∈ X and θ ∈ Θ, let g(x, θ) denote a
subgradient at θ of φ(x, ·). Assume that E[∥g(X, θ)∥22] <∞ for each θ in a neighborhood
of θ⋆, and that ϕ is twice-differentiable at θ⋆ with nonsingular Hessian. Then the
stochastic expansion (1.7) holds.

These results are generic, and yet the assumptions are considerably simpler than
those needed for the statements mentioned above that exploit empirical process theory.

1.2.2 The challenge of infinite dimension

In this subsection the parameter space Θ has a linear structure and it is infinite-
dimensional. More precisely, Θ is an infinite-dimensional Banach space, or less gener-
ally an infinite-dimensional Hilbert space. The theory of probability in Banach spaces
flourished in the 1970s; see, e.g., the monographs [161, 9, 252, 168].

An infinite-dimensional parameter space arises naturally when the data lives in a
function space, for instance when modeling curves (e.g., radar waveforms, spectrometric
data, electricity consumption, ECGs, EEGs, stock prices). Functional data analysis
is the corresponding area of research and it has gained considerable traction since
the 1990s (see, e.g., [217, 93, 124, 127, 270]). In the literature, modeling is usually
performed in the Hilbert space L2, however there has recently been interest in non-
Hilbertian spaces as well [74]. Another case for infinite-dimensional statistics is kernel
methods [69, 121, 281, 198, 173].

A salient feature of infinite-dimensional normed spaces is that closed balls and
spheres are not compact in the norm topology [7, Theorem 5.26]. As a consequence,
compact subsets of Θ have empty interior. A straightforward way of generating com-
pact subsets is to take a finite-dimensional subspace V ⊂ Θ and consider its closed
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and bounded subsets K ⊂ V . Conversely, the following result shows that all compact
subsets of Θ are approximately finite-dimensional.

Proposition 1.5 ([9, Lemma 4.3], [168, Lemma 2.2]). Let Θ be a Banach space and
K ⊂ Θ. K is a compact subset of Θ with respect to the norm topology if and only if
the following conditions hold:

1. K is closed and bounded.

2. For every ε > 0, there exists a finite-dimensional vector subspace V such that for
every x ∈ K, d(x, V ) < ε.

Compact subsets in infinite dimension are therefore somewhat pathological, and
for the statistician this may be understood as some curse of infinite dimensionality
(not to be confused with the synonymous curse from functional data analysis [93,
99]). Indeed, it was seen earlier that classical consistency results in M -estimation are
most easily obtained by leveraging compactness. The control of covering or bracketing
numbers underpins many of the aforementioned theorems on consistency, convergence
rate and limit distribution. It is sometimes achieved by controlling the covering or
bracketing numbers of the index set. For instance, when the Hölder assumption (1.6)
holds and Θ = Rd, it is possible to exploit bounds on the covering number of balls
in Rd. In contrast, when Θ is infinite-dimensional, balls are not totally bounded and
such technique fails. It is also worth mentioning that the limit distribution result [261,
Theorem 3.2.10] hinges on total boundedness of balls, and is therefore not applicable
in infinite dimension.

Unfortunately, the convex case is not spared by the curse either. The remarkably
transparent Propositions 1.3 and 1.4 rely crucially on the following result from convex
analysis.

Proposition 1.6 ([287, Corollary 2.2.23]). Let E be a Banach space and Θ be an open
convex subset of E. Let (fn)n≥1 be a sequence of convex functions on Θ that converges
pointwise to some f . Then (fn)n≥1 converges uniformly on compact subsets of Θ to f .

In the proofs of Propositions 1.3 and 1.4, uniform convergence is applied naturally
on closed balls, which are compact in finite dimension.

We were not successful in developing a general theory of M -estimation in infinite
dimension, even in the convex case. Infinite-dimensionalM -estimation was investigated
by van der Vaart [257, 258, 260] who formulates results with assumptions similar to
those in [261]. For the study of regression M -estimators in infinite dimension, see the
successive works [79, 80, 78, 160]. More recently, Sinova et al. [238] aim to develop
a general theory of M -estimation in Hilbert spaces, with an emphasis on the infinite-
dimensional function space L2. As noted by the authors, their consistency result in the
norm topology [238, Theorem 3.4] covers only finite-dimensional spaces.

Our contribution to infinite-dimensional M -estimation is the study of a specific
M -estimator, which is introduced in the next subsection.
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1.2.3 Quantiles: from R to infinite dimension

Univariate quantiles

Given a probability measure µ on R and p ∈ (0, 1) an elementary parameter of location
is the p-th quantile of µ, which is usually defined as any α ∈ R that satisfies both

µ((−∞, α]) ≥ p and µ([α,∞)) ≥ 1− p. (1.8)

A prominent special case is that of the median, i.e., when p = 1
2
. Quantiles are

important since they provide a measure of the degree of centrality and the median can
be interpreted as a central tendency of the distribution. Quantiles have applications
in hypothesis testing [233], in regression [154] and in robust statistics [133, 192, 177].

It is well-known (see, e.g., [259, p.44]) that the p-th quantile fits the setting of M -
estimation: with the preceding notation, let Θ = X = R, assume that µ has a finite
first moment and consider the contrast function φ : (x, α) 7→ (1−p)(x−α)++p(x−α)−.
Alternatively, it is possible to drop the moment assumption by defining the contrast

φ : (x, α) 7→ |x− α| − |x| − (2p− 1)α. (1.9)

Geometric quantiles

The definition (1.8) relies on the intervals (−∞, α] and [α,∞), thus one may argue that
it hinges on R being a totally ordered set. Measuring centrality is an important topic
in multivariate statistics, hence the need for a generalization of quantiles to higher
dimension. Since there is no natural order on Rd, extending the formulation (1.8)
is impractical. One might be tempted to define a coordinatewise p-th quantile, i.e.,
to consider the vector of univariate p-th quantiles on each coordinate. The resulting
parameter of location is translation equivariant: if T is a translation mapping, X is a
random vector with distribution µ and α is a coordinatewise quantile of X, then T (α)
is a coordinatewise quantile of T (X). However, a major downside of this parameter is
its dependence on the coordinate system, meaning that it is not rotation equivariant.
There is a rich literature on the subject of generalizing measures of centrality and
outlyingness to higher dimension; see, e.g., [239, 288, 232, 197] and the references
therein.

The univariate contrast (1.9) is defined in terms of the absolute value which is a
special case of a norm, and the linear function α 7→ (2p− 1)α, which is a special case
of a linear functional with operator norm less than 1. Consider a normed vector space
(E, ∥·∥) and let Θ = X = E. A natural generalization of the contrast (1.9) is therefore

φ : (x, α) 7→ ∥x− α∥ − ∥x∥ − ℓ(α), (1.10)

where ℓ is an element of the continuous dual space with dual norm less than 1. The
corresponding M -estimator is called geometric quantile or spatial quantile. The ge-
ometric median (i.e., when ℓ = 0) was introduced in the two-dimensional Euclidean
setting by Weber [272] in 1909 and was later reintroduced in the same setting by Gini
and Galvani [103, 225] as well as Haldane [110]. Valadier [253, 254] extended the con-
cept to any reflexive Banach space and Kemperman [148] performed a systematic study
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of existence and uniqueness in general Banach spaces. Chaudhuri [65] and Koltchinskii
[156, 157] defined geometric quantiles in Banach spaces by adding the linear functional
ℓ in the objective function.

1.2.4 Summary of our results

Chapter 4 is based on Romon [223], which is currently under review.
We study large-sample properties of geometric quantiles in infinite-dimensional Ba-

nach spaces.
We begin with new descriptive results for population medians: we prove existence

of a geometric median in a wide variety of L1 spaces, thus improving on Kemperman
[148, Corollary 3.2], and we characterize the set of medians in the degenerate case
where the measure µ is supported on an affine line.

Estimation is performed using an approximate M -estimator: instead of exactly
minimizing the empirical objective (1.2), we require only minimization up to an additive
error ϵn, which may be random.

When the population quantile is not uniquely defined we leverage the theory of
variational convergence to obtain asymptotic statements on subsequences in the weak
topology.

When the population quantile is unique, we show strong consistency of the estimator
in the norm topology. Our result holds under minimal assumptions on µ and in any
separable, uniformly convex space (e.g., separable Hilbert spaces, Lp, W k,p with p ∈
(1,∞)). It is a significant improvement on the result by Chakraborty and Chaudhuri
[64, Theorem 4.2.2], which is only valid in separable Hilbert spaces and requires extra
distributional assumptions.

In a separable Hilbert space, we obtain novel expansions of the kind (1.7) (which are
known as Bahadur–Kiefer representations). An immediate consequence is the asymp-
totic normality of the geometric quantile. Our central limit theorem is formulated
under assumptions that exactly match those of the finite-dimensional case, and it is
therefore a major improvement on Gervini’s normality statement [100, Theorem 6].

1.3 M-estimation in metric trees

1.3.1 M-estimation in metric spaces and Fréchet means

In the previous section, much emphasis was put on the case where the data lives
in a normed vector space E. Such modeling is sometimes not realistic, as the data
may reside in a nonlinear subset S ⊂ E, and the metric induced from the norm may
not be meaningful. Examples range from data on the sphere Sd, which is the object
of directional statistics [181, 171], to data in the form of symmetric positive definite
matrices (which are used to model covariance matrices, e.g., in diffusion tensor imaging
[165] and have also found some use for image segmentation in computer vision [221,
60]), to data in measure spaces (e.g., Wasserstein spaces, which are the cornerstone of
optimal transport [211]) or data in quotient spaces (e.g., when a practioner is interested

17



CHAPTER 1. INTRODUCTION

in shapes of objects, the data can be analyzed modulo translations, rotations and
scalings, hence it belongs to a quotient space, also called a shape space [149, 31]).

The M -estimation framework introduced in the previous section is general and it
applies also in the nonlinear setting [48]. As mentioned in [138], examples include :

1. Extending principal component analysis to manifold-valued data [94, 134, 135,
137]: for example in [137], the first geodesic principal component in the planar
shape space Σk

2 is defined via a minimization problem where Θ = Γ(Σk
2) is the

space of geodesics on Σk
2 and X = Sk

2 is the pre-shape sphere.

2. Extending Euclidean measures of central tendency (e.g., the mean and median)
to the setting of metric spaces: Θ = X = E, where (E, d) is a metric space. This
is our subject of exposition for the rest of this section.

The mean of a measure µ on Rd is defined most elementarily as the vector of the
means for each univariate marginal. In infinite-dimensional Banach spaces, the mean is
classically defined as a Bochner integral [75]. In both cases the definition relies crucially
on the linear structure of the ambient space. As stated earlier in Section 1.2.1, when
Θ = X = Rd the contrast function φ : (x, θ) 7→ ∥x − θ∥22 − ∥x∥22 yields the mean of
the measure µ. This contrast function provides a natural extension of the concept of
mean to metric spaces: fix some arbitrary o ∈ E, assume that

∫
E
d(x, o)dµ(x) < ∞

and define
φ : (x, θ) 7→ d(x, θ)2 − d(x, o)2. (1.11)

Assuming a finite second moment, i.e., if
∫
E
d(x, o)2dµ(x) <∞ for some (and thus for

every) o ∈ E, the contrast can be replaced by the simpler (x, θ) 7→ d(x, θ)2 and one can
define a Fréchet variance. For convenience we let M(µ) denote the set of minimizers of
the corresponding objective function. Elements of M(µ) are known as Fréchet means
[95], barycenters or centers of mass. The existence and uniqueness of Fréchet means
hinges on the geometry of the space E and it is a longstanding topic of research; see,
e.g., [147, 164, 243, 3, 202, 273, 166, 5, 167].

Regarding estimation, we focus solely on theM -estimator obtained by minimization
of the empirical objective (1.2), but another popular estimator is the inductive mean
introduced by Sturm [243]. Since the Fréchet mean may not be uniquely defined,
consistency results quantify some form of closeness between the stochastic set M(µ̂n)
and the true set M(µ) as n goes to infinity. Ziezold [286] proved consistency when E is
a separable metric space, while Bhattacharya and Patrangenaru [33] do so when E has
the Heine–Borel property, i.e., when every closed and bounded set is compact. Central
limit theorems have been developed in the setting where E is a Riemannian manifold
[34, 31, 32, 87]. Non-Euclideanity of the space allows for new asymptotic phenomena
such as stickiness [126, 136] and smeariness [125, 86].

1.3.2 Fréchet means in Hadamard spaces

Next, we briefly introduce nonpositive curvature in the sense of Alexandrov, a geometric
feature of the space E that plays a key role in the analysis of Fréchet means. Extensive
expositions can be found in the monographs [145, 45, 52, 15].
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Let x, y ∈ E. A constant speed geodesic from x to y is a map γ from some interval
[a, b] ⊂ R to E such that γ(a) = x, γ(b) = y and d(γ(t1), γ(t2)) = v|t1 − t2| for some
v ∈ [0,∞) and every t1, t2 ∈ [a, b]. The real number v is called the speed of the geodesic
γ. The image of γ is denoted by [x, y] and it is referred to as a geodesic segment joining
x and y. For the sake of legibility, we will often write γt in lieu of γ(t).

If for every x, y ∈ E there exists a geodesic segment joining x and y, then (E, d) is
said to be a geodesic metric space. If in addition such a geodesic segment is unique,
then (E, d) is called uniquely geodesic. Let us illustrate with some examples. When
E is a normed vector space with norm ∥·∥, the line segment {(1− t)x+ ty : t ∈ [0, 1]}
is a geodesic segment corresponding to the geodesic t 7→ x + t(y − x) defined on [0, 1]
with speed ∥y − x∥. Thus a normed vector space is a geodesic space, but it need not
be uniquely geodesic (consider for instance R2 with the ℓ1 norm). The sphere S2 is
classically equipped with the angular metric, i.e., the standard Riemannian metric.
The sphere is geodesic; more precisely, a geodesic segment is a minor arc of a great
circle. S2 is not uniquely geodesic however: if x and y are antipodal, there are infinitely
many geodesic segments between x and y.

Before we can define nonpositive curvature, we need the concept of comparison
triangle. Assume from now on that E is uniquely geodesic and fix x, y, z ∈ E. The
geodesic triangle with vertices x, y, z is the union of geodesic segments [x, y] ∪ [y, z] ∪
[z, x]. By the triangle inequality, it is possible to construct a triangle in R2 with vertices
x̄, ȳ, z̄ ∈ R2 such that d(x, y) = ∥x̄− ȳ∥, d(y, z) = ∥ȳ − z̄∥ and d(z, x) = ∥z̄ − x̄∥. The
triangle △x̄ȳz̄ is called a comparison triangle for △xyz and it is unique up to isometries.
If γ : [0, 1] → E is the geodesic from x to y, note that d(γt, x) = ∥(1 − t)x̄ + tȳ − x∥
hence the convex combination (1− t)x̄ + tȳ can be interpreted as a comparison point
for γt in △x̄ȳz̄.

The space (E, d) is said to have nonpositive curvature in the sense of Alexandrov
if for every x, y, z ∈ E and every geodesic γ : [0, 1] → E from x to y we have the
inequality

d(γt, z) ≤ ∥(1− t)x̄+ tȳ − z̄∥. (1.12)

Alternatively, (E, d) is said to be CAT(0), which stands for Cartan–Alexandrov–
Toponogov. Intuitively, (1.12) states that every geodesic triangle is thinner than its
Euclidean comparison triangle, as seen in Figure 1.1.

Figure 1.1: Geodesic triangle (left) and a corresponding comparison triangle (right) for
a CAT(0) space.
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If (E, d) is complete and CAT(0), then it is called a Hadamard space. Examples
of Hadamard spaces are Hilbert spaces, convex subsets thereof, and complete simply
connected Riemannian manifolds with nonpositive sectional curvature. Note that the
aforementioned sphere S2 is not CAT(0). In Hadamard spaces it is possible to develop
a theory of convex analysis, convex optimization and probability that generalizes to
nonlinear settings the classical results known in Hilbert spaces.

From now on we assume that (E, d) is Hadamard. A subset C ⊂ E is said to be
geodesically convex if for every x, y ∈ C, the geodesic segment [x, y] is a subset of C.
Given such a subset, a function f : C → R is said to be geodesically convex if for x, y ∈
C and every geodesic γ from x to y defined on [0, 1], we have f(γt) ≤ (1−t)f(x)+tf(y).
After squaring (1.12) and some algebra, the following equivalent inequality is reached:

d(γt, z)
2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2, (1.13)

thus for each z ∈ E, the function d(·, z)2 is geodesically (strongly) convex.
Sturm [243] made apparent the allure of Hadamard spaces and the importance of

(1.13) for the study of the Fréchet mean. First, in this case the Fréchet mean exists and
it is unique: M(µ) = {θ⋆}. Second, because of (1.13) the minimizer θ⋆ is well-separated
(as defined in Section 1.2.1) and this is quantified by the so-called variance inequality
[243, Proposition 4.4]

ϕ(θ) ≥ ϕ(θ⋆) + d(θ, θ⋆)
2 (1.14)

which holds for every θ ∈ E.
Estimating the rate of convergence of empirical Fréchet means has attracted much

attention recently, especially in Hadamard spaces without Riemannian structure where
central limit theorems are not available. The inequality (1.14) is a key technical in-
gredient in all the following works, mentioned in chronological order. Ahidar-Coutrix
et al. [5] consider the case where E is bounded and under a strong metric entropy
assumption they establish that for some constants C1, C2 and every n ≥ 1, t > 0,

P
(√

nd(θ̂n, θ⋆) ≥ C1max(C2,
√
t)
)
≤ 2e−t.

Under a weaker entropy condition they obtain non-parametric rates. Schötz [230] deals
with unbounded E and obtains under a weak entropy condition that for some constant
C3 and every n ≥ 1, t > 0,

P
(√

nd(θ̂n, θ⋆) ≥ t
)
≤ C3

t2
.

Under a strong entropy condition he also shows the asymptotic statement that for some
constant β > 0,

E[d(θ̂n, θ⋆)2] = O
( log(n)β

n

)
.

Le Gouic et al. [167] impose that the Hadamard space have curvature bounded from
below by some κ ≤ 0 (see, e.g., [52] for the definition) and with σ2 denoting the Fréchet
variance they establish that for every n ≥ 1,

E[d(θ̂n, θ⋆)2] ≤
σ2

n
. (1.15)
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Yun and Park [276] obtain results similar to those of Schötz. Brunel et al. [49] define a
notion of sub-Gaussian distribution in metric spaces. Assuming that µ is sub-Gaussian
(e.g., if µ has bounded support) and E has curvature bounded below (to exploit (1.15)),
they show that for some constant C4 and every n ≥ 1, t > 0,

P
(√

nd(θ̂n, θ⋆) ≥ σ + t
)
≤ e−C4t2 . (1.16)

Most recently, Escande [88] proved by a clever stability argument that (1.15) holds, up
to a universal constant, without the lower bound assumption on curvature. He obtains
a bound similar to (1.16) under a sub-exponential tail assumption.

When E = Rd it is well-known that the sample mean suffers from a major defect:
it is easily influenced by outlying observations. This motivates the need for other
parameters of central tendency, such as the median. In the nonlinear setting, for
p ∈ [1,∞) and assuming that

∫
E
d(x, o)p−1dµ(x) < ∞ for some o ∈ E, the location

parameter corresponding to the contrast function

φ : (x, θ) 7→ d(x, θ)p − d(x, o)p

is referred to as the Fréchet p-mean. When p = 2 this is the classical Fréchet mean,
and when p = 1 it is called Fréchet median. For p ̸= 2, statistical results are limited
to consistency [137, 231], and asymptotic normality when E is a Riemannian manifold
[48]. It is difficult to obtain an analog of the variance inequality (1.14), hence the lack
of results on convergence rates.

1.3.3 Metric trees

An important incarnation of Hadamard spaces is the metric tree. Consider a tree T
in the graph-theoretic sense, i.e., an undirected connected acyclic graph with weighted
edges. The weights are interpreted as lengths of the edges, so that the tree is equipped
with the shortest path metric d, thus giving rise to the metric tree (T, d). A rigorous
construction and topological properties of T can be found in [45, p.7]. Metric trees
are important in applications since they can be used to model networks such as road,
river, communication or distribution networks.

There is little statistical literature on Fréchet p-means in the specific setting of
metric trees. Basrak [18] focuses on the Fréchet mean in a binary metric tree, and he
establishes a central limit theorem for the inductive mean. Risser et al. [96, 98] seek
to compute Fréchet means on metric graphs, while Hotz et al. [126] develop laws of
large numbers and central limit theorems when the ambient space is an open book. A
special case of an open book is the m-spider, which can be viewed as a peculiar kind
of metric tree.

An adjacent topic that has attracted greater attention is that of stratified spaces
[138], i.e., spaces that are finite unions of disjoint subspaces. Examples of CAT(0)
stratified spaces include open books [126] and the Billera–Holmes–Vogtmann tree space
[37]. The elements of this space are trees and it was introduced in order to evaluate
the proximity between multiple phylogenetic trees.
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1.3.4 Summary of our results

Chapter 5 is based on Romon and Brunel [224], which is currently under review.
The ambient space E that we consider is a metric tree. We add mild assumptions

on E so that it is a compact Hadamard space. We consider location parameters defined
via the generic contrast φ : (x, θ) 7→ ℓ

(
d(x, θ)

)
, where ℓ : [0,∞) → [0,∞) is a convex

nondecreasing function. We call them Fréchet ℓ-means.
We leverage the geodesic convexity of the objective function ϕ and the geometry

of the tree to define a notion of directional derivative for ϕ. This helps us locate and
characterize Fréchet ℓ-means.

Estimation is performed using the standardM -estimator. We extend to metric trees
the notion of stickiness defined by Hotz et al. [126]: a Fréchet ℓ-mean is either sticky
or partly sticky. We show that empirical stickiness is a non-asymptotic phenomenon
that we quantify with exponential bounds. As an immediate consequence we obtain a
sticky law of large numbers.

Then, we focus on Fréchet medians. We begin by providing more precise results on
their location and uniqueness. In the partly sticky case, we develop non-asymptotic
concentration bounds and central limit theorems.
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Chapter 2

Introduction en français

Trois problèmes sont abordés dans ce manuscrit: l’inférence pour la régression multi-
tâche en grande dimension, les quantiles géométriques dans les espaces de Banach
de dimension infinie, et les ℓ-moyennes de Fréchet dans les arbres métriques. Ces
problèmes ne sont pas sans rapport: nous verrons plus tard dans l’introduction qu’ils
sont connectés par le fil de l’inférence pour laM -estimation. Chaque sujet a un chapitre
dédié dans le manuscrit. L’introduction qui suit fournit une vue d’ensemble pour
chacun des thèmes, le but étant de fournir des éléments de contexte importants. Le
lecteur est averti que les notations employées peuvent changer d’un chapitre à l’autre.

2.1 Régression multi-tâche sparse en grande dimen-
sion

2.1.1 Le Lasso et son débiaisage

Dans le modèle de régression linéaire Gaussien avec n observations (x1, y1), . . . , (xn, yn),
chaque réponse yi ∈ R est une fonction linéaire du vecteur xi ∈ Rp, contaminée par un
bruit Gaussien ϵi

i.i.d.∼ N (0, σ2):
yi = x⊤

i β
∗ + ϵi,

avec β∗ ∈ Rp le vecteur du paramètre inconnu. En définissant y = (y1, . . . , yn)
⊤,

ε = (ϵ1, . . . , ϵn)
⊤ et X la matrice de design dont les lignes sont x⊤

1 , . . . ,x
⊤
n (qui peuvent

être déterministes ou aléatoires), le modèle se réécrit sous forme matricielle comme

y = Xβ∗ + ε.

Dans le cadre de faible dimension où p ≤ n et X est de rang plein, un estimateur
classique de β∗ est celui des moindres carrés ordinaires β̂

(ols)
= (X⊤X)−1X⊤y, qui

est solution du problème des moindres carrés

argmin
β∈Rp

1

2n
∥y −Xβ∥22.
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β̂
(ols)

est un estimateur sans biais de β∗ et sa loi est Np(0, σ
2(X⊤X)−1). Ceci rend

possible l’inférence statistique sur β∗, i.e., les tests d’hypothèse et la construction
d’intervalles de confiance et de régions de confiance pour les coefficients de β∗ [8].

Le cadre de la grande dimension où p peut être beaucoup plus grand que n a
attiré une grande attention au cours des deux dernières décennies. Dans ce cadre, la
matrice X⊤X n’est pas inversible, ce qui nécessite l’introduction d’autres estimateurs.
Quand il est suspecté que seul un petit nombre de variables explicatives contribuent à
la réponse, i.e., quand le vecteur β∗ est s-sparse, un estimateur approprié est le Lasso
[251] β̂

(L)
qui est solution du problème de minimisation

argmin
β∈Rp

1

2n
∥y −Xβ∥22 + λ∥β∥1,

où λ > 0 est un paramètre de régularisation choisi par l’utilisateur.
La performance du Lasso pour la prédiction, l’estimation et la récupération du

support a été étudiée en détail dans les années 2000; voir, e.g., [106, 56, 35, 188, 282,
268]. Ces résultats sont fondamentaux, et pourtant ils sont insuffisants pour l’inférence
statistique sur des quantités f(β∗) où f : Rp → Rd avec d petit devant p, e.g., pour
l’inférence sur un seul coefficient du vecteur β∗. Par exemple, les inégalités oracle
[269, Equation (7.26)] donnent des intervalles de confiance pour β∗

1 qui sont de taille
≍
√

(s log p)/n, ce qui est loin d’être optimal. Par ailleurs, β̂
(L)

n’a pas de loi limite
raisonnable, même dans le cadre de faible dimension [153].

Contrairement aux moindres carrés, on peut prouver que le Lasso est biaisé [139,
Corollary 11] et le biais est plus grand pour les gros coefficients de β∗. Ceci a motivé la
construction d’autres estimateurs en partant de β̂

(L)
, qui aient de meilleures propriétés

inférentielles.
Dans les années 2010, sous l’hypothèse d’un design aléatoire avec des lignes i.i.d.

de covariance Σ, les travaux pionniers [280, 51, 256, 139] ont introduit des estimateurs
débiaisés β̂

(d)
de la forme β̂

(d)
= β̂

(L)
+ 1

n
MX⊤(y −Xβ̂

(L)
) où M ∈ Rp×p est choisi

de sorte à approcher la matrice de précision Σ−1. En exploitant β̂
(d)

, ces travaux
construisent des intervalles de confiance pour un seul coefficient de β∗ dans le régime
s ≲

√
n/ log p. [141] relâche l’hypothèse de sparsité à s ≲ n/(log p)2, [284, 42, 54, 55,

285, 26] construisent des intervalles de confiance pour des fonctionnelles générales a⊤β∗

où a ∈ Rp. Plus récemment, [193, 26, 27] établissent la nécessité d’un ajustement par
degrés de liberté pour traiter des sparsités plus grandes: M devrait idéalement être
égal à Σ−1/(1− ∥β̂(L)∥0/n).

2.1.2 Group Lasso et régression multi-tâche

Une hypothèse structurelle plus générale sur le paramètre β∗ est la groupe-sparsité:
l’ensemble d’indices [1, p] est partitionné en m groupes G1, . . . , Gm ⊂ [1, p] connus a
priori et il n’y a qu’un petit nombre d’indices k ∈ [1,m] tels que {β∗

j : j ∈ Gk} ≠ {0}.
À l’intérieur d’un groupe, toutes les variables sont soit pertinentes soit toutes exclues.
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Un estimateur approprié dans ce cas est le Group Lasso [275] β̂
(g)

qui est solution
du problème de minimisation pénalisé par la norme ℓ2,1 ∥β∥2,1 =

∑m
k=1

(∑
j∈Gk

β2
j

)1/2:
argmin

β∈Rp

1

2n
∥y −Xβ∥22 + λ∥β∥2,1.

La performance en prédiction et estimation de cet estimateur est analysée dans [201,
130, 174]. La méthodologie susmentionnée pour le débiaisage a été étendue au cadre
groupé dans [187, 194, 255, 242, 27].

Un problème connexe est celui de la régression multi-tâche. Nous considérons le
modèle linéaire multivarié Gaussien avec T réponses ou tâches

Y = XB∗ +E

où B∗ ∈ Rp×T , Y ∈ Rn×T et E a des lignes i.i.d. NT (0,S). L’hypothèse structurelle
est que B∗ est row-sparse, i.e., de nombreuses variables sont sans intérêt, et ceci pour
toutes les tâches. La régression multi-tâche peut être considérée comme un cas de
régression groupe-sparse

ȳ = X̄β̄
∗
+ ε̄

où ȳ = vec(Y ) ∈ Rn̄, ε̄ = vec(E) ∈ Rn̄, X̄ ∈ Rn̄×p̄ est diagonale par blocs avec des
blocs X, p̄ = pT , n̄ = nT et les indices {1, ..., p̄} sont partitionnés en p groupes de
tailles égales.

Le fait que le design X̄ soit diagonal par blocs est un obstacle qui empêche l’application
directe des résultats inférentiels sur le Group Lasso. L’inférence pour le modèle de ré-
gression multi-tâche a été abordée dans [67], qui étend la méthodologie de débiaisage
introduite dans [280, 256].

2.1.3 Résumé de nos résultats

Le Chapitre 3 est tiré de Bellec et Romon [23], qui est actuellement en cours d’examen
dans une revue.

Les objectifs inférentiels de ce chapitre sont doubles. Premièrement nous constru-
isons des intervalles pour une fonctionnelle du vecteur correspondant à la première
tâche a⊤B∗e1, en exploitant les réponses pour chaque tâche simultanément. Deux-
ièmement, nous construisons des ellipsoïdes de confiance pour les lignes e⊤

j B
∗ ∈ R1×T

de B∗, ce qui nous permet de formuler des tests d’hypothèse pour la nullité de la j-ème
ligne de B∗, ou de façon équivalente de tester que le signal ne dépend pas de la j-ème
variable.

Afin de réaliser ces objectifs, nous introduisons un nouvel objet qui ne dépend que
des données: la matrice d’interaction Â ∈ RT×T . L’introduction de cette matrice
est cruciale pour l’obtention de résultats inférentiels. Â ∈ RT×T généralise au cadre
multi-tâche les méthodes de débiaisage, en particulier les ajustements par degrés de
liberté.

Lorsque Σ est supposée inconnue, les résultats issus de la littérature en régression
groupée nécessitent une sparsité s ≲

√
n à des constantes près dépendant de T et de
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facteurs logarithmiques en (n, p). En exploitant la matrice d’interaction nous obtenons
des lois limites normales et χ2 sous les conditions min(T 2, log8 p)/n→ 0 et

sT + s log(p/s) + ∥Σ−1ej∥0 log p
n

→ 0,
min(s, ∥Σ−1ej∥0)√

n

√
[T + log(p/s)] log p→ 0,

ce qui couvre le régime de sparsité s≫
√
n lorsque ∥Σ−1ej∥0

√
T ≪

√
n à des facteurs

logarithmiques près.

2.2 M-estimation, dimension infinie et quantiles
Les moindres carrés ordinaires, le Lasso et le Group Lasso introduits dans la sec-
tion précédente sont définis comme solution d’un problème de minimisation. Il s’agit
d’exemples de M -estimation, notion sur laquelle nous nous concentrons ci-après.

2.2.1 M-estimation: résultats classiques

Un paramètre de population θ⋆ est souvent défini de manière implicite comme un
minimiseur d’une fonction objectif ϕ du type suivant:

ϕ : Θ → R

θ 7→
∫
X
φ(x, θ)dµ(x), (2.1)

où Θ est l’espace des paramètres, (X ,A, µ) est un espace probabilisé et φ : X × Θ →
R est une fonction de contraste intégrable du premier argument. Étant donné un
échantillon i.i.d. X1, . . . , Xn ∼ µ, un M -estimateur θ̂n de θ⋆ est défini comme un
minimiseur de la fonction objectif ϕ̂n

ϕ̂n : θ 7→ 1

n

n∑
i=1

φ(Xi, θ), (2.2)

qui est obtenue en remplaçant la mesure en population µ dans (2.1) par la mesure
empirique µ̂n = 1

n

∑n
i=1 δXi

.
Les éléments aléatoires X1, X2, . . . sont définis sur un espace probabilisé (Ω,F ,P).

Pour simplifier l’exposition nous ne considérons pas les problèmes de mesurabilité dans
cette introduction. Nous supposons par conséquent que θ̂n est mesurable entre les
tribus F et A.

Ce cadre général a été formulé par Huber [131], qui utilise la lettre “M” comme
abréviation de “minimize”. Des exemples classiques de M -estimation dans le cadre
Euclidien (i.e., Θ est une partie de Rd, muni de sa structure hilbertienne classique)
incluent le cas où:

1. Θ = X = Rd avec d ≥ 1, µ est une mesure de probabilité ayant un moment
d’ordre 1 et φ : (x, θ) 7→ ∥x − θ∥22 − ∥x∥22. Ici θ⋆ est l’espérance de µ, i.e.,
θ⋆ =

∫
Rd xdµ(x) et θ̂n est la moyenne empirique: θ̂n = 1

n

∑n
i=1Xi.
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2. Θ = X = R, µ est une mesure de probabilité et φ : (x, θ) 7→ |x − θ| − |x|. Les
minimiseurs de ϕ (potentiellement en nombre infini) sont les médianes de µ et
ceux de ϕ̂n sont les médianes empiriques usuelles, qui s’écrivent explicitement en
termes des statistiques d’ordre X(1) ≤ . . . ≤ X(n): lorsque n est impair X(⌊n

2
⌋+1)

est l’unique médiane empirique, et lorsque n est pair l’argmin est l’intervalle
[X(n

2
), X(n

2
+1)].

3. Θ = X = R, µ est une mesure de probabilité ayant un moment d’ordre 1 et
φ : (x, θ) 7→ (x − θ)21|x−θ|≤c + (2c|x − θ| − c2)1|x−θ|>c où c ≥ 0. Ce contraste a
été introduit par Huber [131] pour des questions de robustesse.

4. Θ ⊂ Rd où d ≥ 1, µ est contenue dans une famille paramétrique (Pθ)θ∈Θ (i.e.,
µ = Pθ0 pour un θ0 ∈ Θ), la famille est dominée par une mesure σ-finie ν,
les densités correspondantes (fθ)θ∈Θ sont strictement positives ν-p.p., pour tout
θ ∈ Θ, ∫

X
| ln fθ(x)|fθ0(x)dν(x) <∞

et φ : (x, θ) 7→ − ln fθ(x). Tout minimiseur de θ⋆ vérifie Pθ⋆ = µ et il est unique
si et seulement si la famille (Pθ)θ∈Θ est identifiable. Minimiser ϕ̂n coincide avec
l’estimation classique par maximum de vraisemblance.

5. Θ = Rd, X = Rd+1 with d ≥ 1, µ est une mesure de probabilité ayant un moment
d’ordre 2, le vecteur aléatoire (X, Y ) ∼ µ vérifie E[Y |X] = θ⊤0 X pour un θ0 ∈ Rd

et φ :
(
(x, y), θ

)
7→ (y−θ⊤x)2. Dans ce cas, la M -estimation est un cas particulier

des moindres carrés ordinaires.

Consistence, vitesse de convergence et loi limite

Supposons que ϕ a un unique minimiseur θ⋆ qui est le paramètre inconnu d’intérêt.
Une première étape vers une estimation satisfaisante de θ⋆ est la consistence de la
suite (θ̂n)n≥1, i.e., une forme de convergence stochastique vers θ⋆. Pour quantifier ce
phénomène nous imposons à partir de maintenant que Θ soit un espace métrique avec
une distance d, et nous disons que (θ̂n)n≥1 est fortement consistent (resp., faiblement
consistent) si d(θ̂n, θ⋆) converge presque sûrement (resp., en probabilité) vers 0.

Eu égard à la généralité du cadre d’estimation (2.1), les statisticiens ont tenté
d’établir des conditions générales de consistence qui couvrent une variété de contrastes
φ. Les conditions de consistence qui suivent sont classiques et énoncées dans [261, 259].

Proposition 2.1 ([261, Corollary 3.2.3], [259, Theorem 5.7]). 1. Si

sup
θ∈Θ

|ϕ̂n(θ)− ϕ(θ)| P−−−→
n→∞

0 (2.3)

et
∀ε > 0, inf

θ∈Θ
∥θ−θ⋆∥≥ε

ϕ(θ) > ϕ(θ⋆), (2.4)

alors (θ̂n)n≥1 est faiblement consistent.

27



CHAPTER 2. INTRODUCTION EN FRANÇAIS

2. Si (2.3) est remplacé par la convergence uniforme sur tout compact, si (2.4) est
vraie et sous l’hypothèse

∀ε > 0,∃Kcompact ,∀n ≥ 1, P(θ̂n ∈ K) ≥ 1− ε,

alors (θ̂n)n≥1 est faiblement consistent.

Proposition 2.2 ([259, Theorem 5.14]). Si θ 7→ φ(x, θ) est semicontinue inférieure-
ment pour µ-presque tout x et ∀θ ∈ Θ,∃r > 0,E

[
inf
α∈Θ

∥α−θ∥≥r

φ(X1, α)
]
< ∞, alors pour

tout ε > 0 et tout compact K ⊂ Θ,

P
(
{d(θ̂n, θ⋆) ≥ ε} ∩ {θ̂n ∈ K}

)
−−−→
n→∞

0. (2.5)

Commentons brièvement ces résultats. La condition de convergence uniforme stochas-
tique (2.3) est équivalente au fait que la classe de fonctions

(
φ(·, θ)

)
θ∈Θ soit µ-Glivenko–

Cantelli. Ceci peut être déterminé en utilisant des outils issus de la théorie des processus
empiriques, tels que le bracketing et l’entropie [261, Part 2]. Par exemple, la classe est
Glivenko–Cantelli si elle est compacte point par point, c’est-à-dire qu’elle est dominée
par une fonction intégrable, que Θ est un espace métrique compact et que θ 7→ φ(x, θ)
est continu pour tout x ∈ X [259, Example 19.8].

Sous la condition (2.4), si θ est séparé de θ⋆ alors ϕ(θ) ne peut pas être arbitraire-
ment proche de la valeur minimale de ϕ. Dans ce cas le minimiseur de θ⋆ est dit “bien
séparé”. Lorsque ϕ is semicontinue inférieurement et Θ est un espace métrique compact,
θ⋆ est automatiquement bien séparé. L’énoncé de convergence (2.5) donne la consis-
tence faible si on sait exhiber une partie compacte K telle que limn→∞ P(θ̂n ∈ K) = 1.

À la lumière de cette discussion, il apparait que les parties compactes de Θ et la
compacité de Θ lui-même joue un rôle dans la preuve de la consistence. D’autres condi-
tions générales sont formulées dans [132, 212, 120, 83]. Elles sont similaires en substance
aux conditions énoncées précédemment et s’appuient également sur la compacité.

Une fois la consistence obtenue il est intéressant de quantifier la vitesse de conver-
gence, i.e., trouver une suite de réels (rn)n≥1 telle que limn rn = ∞ et rnd(θ̂n, θ⋆) =
OP(1). Un résultat général dans cette direction est [261, Corollary 3.2.6], qui re-
quiert que ϕ croisse localement à une vitesse au moins quadratique, i.e., ϕ(θ) ≥
ϕ(θ⋆) + cd(θ, θ⋆)

2 pour une constante c > 0 et tout θ dans un voisinage de θ⋆, et qu’il
y ait un contrôle du processus empirique indexé par la classe Mδ = {φ(·, θ)−φ(·, θ⋆) :
d(θ, θ⋆) < δ} où δ varie dans un voisinage de 0. Cette condition de croissance est
immédiate lorsque Θ est un espace Euclidien et ϕ est deux fois différentiable en θ⋆ avec
une Hessienne ∇2ϕ(θ⋆) inversible. La seconde condition peut être vérifiée en majorant
une intégrale d’entropie uniforme ou une intégrale de bracketing de Mδ. Dans le cas
particulier où Θ est Euclidien et que le contraste est Hölder de la deuxième variable,
i.e., pour tout θ1, θ2 dans un voisinage de θ⋆ et µ-presque tout x ∈ X ,

|φ(x, θ1)− φ(x, θ2)| ≤ C(x)∥θ1 − θ2∥α, (2.6)

l’intégrale de bracketing de Mδ est facilement majorée en utilisant les covering numbers
des boules dans Rd. En pratique, pour obtenir une vitesse de convergence il est donc
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commode que Θ soit un espace Euclidien. Dans les espaces non-Euclidiens tels que
les espaces normés de dimension infinie, il peut être approprié de considérer un M -
estimateur tamisé au lieu de θ̂n: étant donné une suite croissante de parties Θn ⊂ Θ,
la minimisation est effectué sur Θn au lieu de l’espace entier. La M -estimation tamisée
peut être vue comme une forme de régularisation, ce qui peut permettre d’éviter le
surapprentissage. Des vitesses pour les M -estimateurs tamisés sont énoncées dans
[261, Chapter 3.4].

La vitesse rn a le bon ordre si de surcroît
(
rnd(θ̂n, θ⋆)

)
n≥1

converge en loi. Des
résultats génériques de ce type sont ordinairement énoncés dans le cas où Θ est un
espace Euclidien. Un tel résultat est [261, Theorem 3.2.10], qui exploite la théorie des
processus empiriques. Un autre basé sur la linéarisation est [261, Theorem 3.2.16], qui
a la conclusion plus précise rn(θ̂n − θ⋆) = −[∇2ϕ(θ⋆)]

−1Zn + oP(1) où (Zn)n≥1 est une
suite tendue de vecteurs aléatoires. Il est souvent (mais pas toujours, voir [151]) vrai
que rn =

√
n et qu’on a le développement stochastique:

√
n(θ̂n − θ⋆) = −[∇2ϕ(θ⋆)]

−1 1√
n

n∑
i=1

∇θφ(Xi, θ⋆) + oP(1). (2.7)

Le théorème central limite implique alors que
√
n(θ̂n − θ⋆) est asymptotiquement

normal: il y a convergence en loi vers une normale multivariée centrée de variance-
covariance [∇2ϕ(θ⋆)]

−1E
[
∇θφ(X1, θ⋆)∇θφ(X1, θ⋆)

⊤][∇2ϕ(θ⋆)]
−1. Ceci est vrai par ex-

emple lorsque le contraste satisfait (2.6) with α = 1 [261, Example 3.2.22]. Des résultats
du même acabit sont énoncés dans [132, 214, 215].

Le cas convexe

La situation suivante est commune: Θ est un ouvert convex de Rd et le contrast est
convexe du deuxième argument, i.e., pour µ-presque tout x ∈ X , la fonction θ 7→
φ(x, θ) est convexe. La convexité simplifie grandement les énoncés de consistence et de
normalité asymptotique, comme observé dans [108, 199, 119].

Proposition 2.3 ([108, Theorem 5.1],[199, Theorem 1]). Sous l’hypothèse de convexité,
(θ̂n)n≥1 est fortement consistent.

Proposition 2.4 ([199, Theorem 4]). Pour tout x ∈ X et θ ∈ Θ, on note g(x, θ) un
sous-gradient en θ de φ(x, ·). Supposons que E[∥g(X, θ)∥22] < ∞ pour tout θ dans un
voisinage de θ⋆, et que ϕ est deux fois différentiable en θ⋆ avec une Hessienne invertible.
Alors on a le développement stochastique (2.7).

Ces énoncés sont génériques, et pourtant les hypothèses sont considérablement plus
simples que celles requises pour les résultats évoqués précédemment qui exploitent la
théorie des processus empiriques.

2.2.2 Le défi de la dimension infinie

Dans cette sous-section l’espace des paramètres Θ est doté d’une structure linéaire et
il est supposé de dimension infinie. Plus précisément, Θ est un espace de Banach de
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dimension infinie, ou plus spécifiquement un espace de Hilbert de dimension infinie.
La théorie des probabilités dans les espaces de Banach s’est développée dans les années
1970; voir, e.g., les monographies [161, 9, 252, 168].

La dimension infinie est un cadre naturel lorsque les données vivent dans un es-
pace fonctionnel, par exemple dans la modélisation de courbes (e.g., les données spec-
trométriques, la consommation d’électricité, les électrocardiogrammes, le cours de
la bourse). L’analyse des données fonctionnelles est le domaine de recherche corre-
spondant et elle s’est considérablement développée depuis les années 1990 (voir, e.g.,
[217, 93, 124, 127, 270]). Dans la littérature, la modélisation est faite habituellement
dans l’espace de Hilbert L2, toutefois il y a un intérêt récent pour les espaces non-
Hilbertiens [74]. Un autre contexte pour la statistique de dimension infinie est celui
des méthodes à noyaux [69, 121, 281, 198, 173].

Une caractéristique essentielle des espaces normés de dimension infinie est que les
boules fermées et les sphères ne sont pas compactes pour la topologie normique [7, The-
orem 5.26]. Par conséquent, les parties compactes de Θ sont d’intérieur vide. Un moyen
pour créer des compacts est de fixer un sous-espace vectoriel V ⊂ Θ de dimension finie
et de considérer ses parties K ⊂ V qui sont à la fois fermées et bornées. Réciproque-
ment, le résultat suivant montre que tous les compacts de Θ sont approximativement
de dimension finie.

Proposition 2.5 ([9, Lemma 4.3], [168, Lemma 2.2]). Soit Θ un Banach et K ⊂ Θ.
K est une partie compacte de Θ pour la topologie normique si et seulement si les deux
conditions suivantes sont vérifiées:

1. K est fermé et borné.

2. Pour tout ε > 0, il existe V un sous-espace vectoriel de dimension finie tel que
pour tout x ∈ K, d(x, V ) < ε.

Les compacts en dimension infinie sont donc plutôt pathologiques, et le statisti-
cien peut interpréter ce phénomène comme un fléau de la dimension infinie (à ne pas
confondre avec le fléau synonyme en analyse des données fonctionnelles [93, 99]). En
effet, nous avons vu précédemment que les résultats classiques de consistence en M -
estimation sont plus faciles à obtenir en tirant parti de la compacité. Le contrôle des
covering numbers ou bracketing numbers sous-tend plusieurs des résultats de consis-
tence, vitesse et loi limite mentionnés au-dessus. Ce contrôle est parfois réalisé en
maîtrisant les covering ou bracketing numbers de l’ensemble d’indexation. Par exem-
ple, sous l’hypothèse Hölder (2.6) et quand Θ = Rd, il est possible d’exploiter les bornes
sur le covering number des boules dans Rd. Par opposition, lorsque Θ est de dimension
infinie, les boules ne sont pas précompactes et une telle technique ne fonctionne pas.
On peut aussi remarquer que l’énoncé de loi limite [261, Theorem 3.2.10] repose sur la
précompacité des boules, il n’est donc pas applicable en dimension infinie.

Malheureusement le cas convexe n’est pas épargné par ce fléau. La preuve des
Propositions 2.3 and 2.4 s’appuie crucialement sur le résultat suivant d’analyse convexe.

Proposition 2.6 ([287, Corollary 2.2.23]). Soit E un Banach et Θ un ouvert convexe
de E. Soit (fn)n≥1 une suite de fonctions convexes sur Θ qui converge simplement vers
un certain f . Alors (fn)n≥1 converge uniformément sur tout compact de Θ vers f .
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Dans les preuves des Propositions 2.3 and 2.4, la convergence uniforme est naturelle-
ment appliquée aux boules fermées, qui sont compactes en dimension finie.

Nous n’avons pas réussi à développer une théorie générale de la M -estimation en
dimension infinie, même dans le cas convexe. La M -estimation en dimension infinie a
été étudiée par van der Vaart [257, 258, 260] qui formule des énoncés avec des hypothèses
similaires à celles de [261]. Pour l’étude du M -estimateur en régression, on renvoie aux
travaux successifs [79, 80, 78, 160]. Plus récemment, Sinova et al. [238] ont pour objectif
de développer une théorie générale de la M -estimation dans les espaces de Hilbert, en
mettant l’accent sur l’espace fonctionnel L2. Comme remarqué par les auteurs, leur
théorème de consistence [238, Theorem 3.4] n’est vrai qu’en dimension finie.

Notre contribution à la M -estimation en dimension infinie est l’étude d’un M -
estimateur particulier, qui est introduit dans la sous-section qui suit.

2.2.3 Quantiles: de R à la dimension infinie

Quantiles univariés

Étant donné une mesure de probabilité µ sur R et p ∈ (0, 1) un paramètre élémentaire
de localisation est le p-quantile de µ, qui est habituellement défini comme n’importe
quel α ∈ R satisfaisant à la fois

µ((−∞, α]) ≥ p et µ([α,∞)) ≥ 1− p. (2.8)

Un cas particulier important est la médiane, i.e., lorsque p = 1
2
. Les quantiles sont

essentiels car ils fournissent une mesure du degré de centralité, et la médiane peut être
interprétée comme une tendance centrale de la loi. Les quantiles ont des applications
pour les tests d’hypothèse [233], pour la régression [154] et pour la statistique robuste
[133, 192, 177].

Il est connu (voir, e.g., [259, p.44]) que le p-quantile est compatible avec la M -
estimation: avec les notations précédentes, soit Θ = X = R, supposons que µ a une
espérance et considérons le contraste φ : (x, α) 7→ (1 − p)(x − α)+ + p(x − α)−. De
manière alternative, on peut omettre l’hypothèse de moment en définissant le contraste

φ : (x, α) 7→ |x− α| − |x| − (2p− 1)α. (2.9)

Quantiles géométriques

La définition (2.8) s’appuie sur les intervalles (−∞, α] et [α,∞), et on peut donc
affirmer qu’elle repose sur l’ordre de R. Mesurer la centralité est un sujet important
en statistique multivariée, d’où la nécessité de généraliser les quantiles aux dimensions
supérieures. Comme il n’y a pas d’ordre naturel sur Rd, étendre la formulation (2.8)
n’est pas pratique. La littérature afférente aux généralisations des mesures de centralité
en dimension supérieure est riche; voir e.g., [239, 288, 232, 197] et les références qui s’y
trouvent.

Considérons un espace vectoriel normé (E, ∥·∥) et soit Θ = X = E. Une générali-
sation naturelle du contraste (2.9) est

φ : (x, α) 7→ ∥x− α∥ − ∥x∥ − ℓ(α), (2.10)
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où ℓ est une fonctionnelle continue de norme strictement inférieure à 1. LeM -estimateur
correspondant est appelé quantile géométrique ou quantile spatial. La médiane géométrique
(i.e., lorsque ℓ = 0) a été introduite dans le cas bidimensionnel Euclidien par Weber
[272] en 1909, et a été réintroduit ultérieurement dans le même cadre par Gini et Galvani
[103, 225] ainsi que Haldane [110]. Valadier [253, 254] a étendu le concept à n’importe
quel Banach réflexif et Kemperman [148] a effectué une étude systématique d’existence
et d’unicité dans les espaces de Banach. Chaudhuri [65] et Koltchinskii [156, 157] ont
défini les quantiles géométriques dans les Banach en ajoutant la fonctionnelle ℓ à la
fonction objectif.

2.2.4 Résumé de nos résultats

Le Chapitre 4 est tiré de Romon [223], qui est actuellement en cours d’examen dans
une revue.

Nous étudions les propriétés asymptotiques des quantiles géométriques dans les
Banach de dimension infinie.

Nous commençons par des résultats descriptifs sur les médianes en population.
L’estimation est effectuée avec un M -estimateur approché. Quand le quantile en pop-
ulation n’est pas unique nous utilisons la théorie de la convergence variationnelle pour
obtenir des résultats asymptotiques sur les sous-suites dans la topologie faible. Quand
le quantile en population est unique, nous montrons la consistence forte de l’estimateur
pour la topologie normique. Notre théorème est valide sous des hypothèses minimales
sur µ et dans n’importe quel espace séparable et uniformément convexe. Dans un
Hilbert séparable nous obtenons la normalité asymptotique. Notre théorème central
limite est formulé sous des hypothèses correspondant exactement à celles de la dimen-
sion finie.

2.3 M-estimation dans les arbres métriques

2.3.1 M-estimation dans les espaces métriques et moyennes de
Fréchet

Dans la section précédente, l’accent a été mis sur le cas où les données résident dans
un espace vectoriel normé E.

Un tel modèle n’est parfois pas réaliste, car les données peuvent se situer dans un
sous-ensemble non linéaire S ⊂ E, et la distance induite par la norme peut ne pas être
significative.

Les exemples vont des données sur la sphère Sd, qui sont l’objet de la statistique di-
rectionnelle [181, 171], aux données sous la forme de matrices symétriques définies pos-
itives (utilisées pour modéliser les matrices de covariance, par exemple dans l’imagerie
par tenseur de diffusion [165] et qui ont également trouvé une utilisation dans la seg-
mentation d’images en vision par ordinateur [221, 60]), aux données dans les espaces
de mesure (comme les espaces de Wasserstein, qui sont au coeur du transport optimal
[211]), ou aux données dans des espaces quotient (par exemple, lorsqu’un praticien
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s’intéresse aux formes d’objets, les données peuvent être analysées modulo les trans-
lations, rotations et mises à l’échelle, ce qui les fait appartenir à un espace quotient,
également appelé espace de forme [149, 31]).

Le cadre de la M -estimation introduit dans la section précédente est général et
s’applique également dans le cadre non linéaire [48]. Comme mentionné dans [138], on
peut mentionner par exemple:

1. L’extension de l’analyse en composantes principales aux données à valeurs dans
des variétés ([94, 134, 135, 137]): par exemple, dans [137], la première composante
principale géodésique dans l’espace de forme planaire Σk

2 est définie via un prob-
lème de minimisation où Θ = Γ(Σk

2) est l’espace des géodésiques sur Σk
2 et X = Sk

2

est la sphère pré-forme.

2. L’extension des mesures Euclidiennes de tendance centrale (comme la moyenne et
la médiane) au cadre des espaces métriques : Θ = X = E, où (E, d) est un espace
métrique. C’est le sujet de notre présentation pour le reste de cette section.

L’espérance d’une mesure µ sur Rd est définie de la manière la plus élémentaire
comme le vecteur des moyennes de chaque coordonnée. Dans les espaces de Banach
de dimension infinie, la moyenne est classiquement définie comme une intégrale de
Bochner [75]. Dans les deux cas, la définition dépend crucialement de la structure
linéaire de l’espace ambiant. Comme indiqué précédemment dans la section 2.2.1,
lorsque Θ = X = Rd, la fonction de contraste φ : (x, θ) 7→ ∥x − θ∥22 − ∥x∥22 donne
l’espérance de la mesure µ. Cette fonction de contraste offre une extension naturelle
du concept de moyenne aux espaces métriques: fixons un point arbitraire o ∈ E,
supposons que

∫
E
d(x, o)dµ(x) <∞ et définissons

φ : (x, θ) 7→ d(x, θ)2 − d(x, o)2. (2.11)

En supposant un moment d’ordre 2, c’est-à-dire si
∫
E
d(x, o)2dµ(x) < ∞ pour un (et

donc pour tout) o ∈ E, le contraste peut être remplacé par la fonction plus simple
(x, θ) 7→ d(x, θ)2, et on peut définir une variance de Fréchet. Par commodité, nous
notons M(µ) l’ensemble des minimiseurs de la fonction objectif correspondante. Les
éléments de M(µ) sont connus sous le nom de moyennes de Fréchet [95], de barycentres
ou de centres de masse. L’existence et l’unicité des moyennes de Fréchet dépendent
de la géométrie de l’espace E, et c’est un sujet de recherche de longue date; voir, par
exemple, [147, 164, 243, 3, 202, 273, 166, 5, 167].

En ce qui concerne l’estimation, nous nous concentrons uniquement sur le M -
estimateur obtenu en minimisant l’objectif empirique (2.2). Cependant, un autre es-
timateur populaire est la moyenne inductive introduite par Sturm [243]. Étant donné
que la moyenne de Fréchet peut ne pas être définie de manière unique, les résultats
de consistence quantifient une forme de proximité entre l’ensemble stochastique (µ̂n)
et l’ensemble cible M(µ) lorsque n tend vers l’infini. Ziezold [286] a démontré la
consistence lorsque E est un espace métrique séparable, tandis que Bhattacharya et
Patrangenaru [33] l’ont fait lorsque E possède la propriété de Heine-Borel, c’est-à-dire
lorsque tout ensemble fermé et borné est compact. Des théorèmes central limite ont été
développés dans le cas où E est une variété Riemannienne [34, 31, 32, 87]. Le caractère
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non-Euclidien de l’espace donne lieu à de nouveaux phénomènes asymptotiques tels
que la “stickiness” [126, 136] et la “smeariness” [125, 86].

2.3.2 Moyennes de Fréchet dans les espaces de Hadamard

Ensuite, nous introduisons brièvement la notion de courbure négative au sens d’Alexandrov,
une caractéristique géométrique de l’espace E qui joue un rôle clé dans l’analyse des
moyennes de Fréchet. Des présentations détaillées sont disponibles dans les monogra-
phies [145, 45, 52, 15].

Soient x, y ∈ E. Une géodésique à vitesse constante de x à y est une application
γ définie sur un intervalle [a, b] ⊂ R vers E, telle que γ(a) = x, γ(b) = y, et que
d(γ(t1), γ(t2)) = v|t1 − t2| pour un certain v ∈ [0,∞) et pour tout t1, t2 ∈ [a, b]. Le
nombre réel v est appelé la vitesse de la géodésique γ. L’image de γ est notée [x, y] et
est appelée segment géodésique joignant x et y. Pour plus de lisibilité, nous écrirons
souvent γt au lieu de γ(t).

Si pour tout x, y ∈ E, il existe un segment géodésique joignant x et y, alors on dit
que (E, d) est un espace métrique géodésique. Si, de plus, un tel segment géodésique
est unique, alors on dit que (E, d) est uniquement géodésique. Illustrons cela avec
quelques exemples. Lorsque E est un espace vectoriel normé avec la norme ∥·∥, le
segment de droite (1− t)x+ ty : t ∈ [0, 1] est un segment géodésique correspondant à la
géodésique t 7→ x+t(y−x) définie sur [0, 1] ayant pour vitesse ∥y−x∥. Ainsi, un espace
vectoriel normé est un espace métrique géodésique, mais il n’est pas nécessairement
uniquement géodésique (cf. R2 avec la norme ℓ1). La sphère S2 est classiquement
équipée de la distance angulaire, c’est-à-dire la distance Riemannienne standard. La
sphère est géodésique; plus précisément, un segment géodésique est un arc mineur
d’un grand cercle. Cependant, S2 n’est pas uniquement géodésique: si x et y sont
antipodaux, il existe une infinité de segments géodésiques entre x et y.

Avant de pouvoir définir la notion de courbure négative, nous avons besoin du
concept de triangle de comparaison. Supposons à partir de maintenant que E est
uniquement géodésique et fixons x, y, z ∈ E. Le triangle géodésique de sommets x, y, z
est l’union de segments géodésiques [x, y] ∪ [y, z] ∪ [z, x]. Par inégalité triangulaire,
il est possible de construire un triangle de R2 de sommets x̄, ȳ, z̄ ∈ R2 de sorte que
d(x, y) = ∥x̄− ȳ∥, d(y, z) = ∥ȳ− z̄∥ and d(z, x) = ∥z̄− x̄∥. Le triangle △x̄ȳz̄ est appelé
triangle de comparaison pour △xyz et il est unique à isométrie près. Si γ : [0, 1] → E
est la géodésique de x à y, nous remarquons que d(γt, x) = ∥(1− t)x̄+ tȳ− x∥ donc la
combinaison convexe (1−t)x̄+tȳ peut être interprétée comme un point de comparaison
pour γt dans △x̄ȳz̄.

On dit que l’espace (E, d) est de courbure négative au sens d’Alexandrov si pour
tout x, y, z ∈ E et toute géodésique γ : [0, 1] → E de x à y nous avons l’inégalité

d(γt, z) ≤ ∥(1− t)x̄+ tȳ − z̄∥. (2.12)

De manière alternative, on dit que (E, d) est CAT(0), pour Cartan–Alexandrov–Toponogov.
Intuitivement, (1.12) signifie que chaque triangle géodésique est plus mince que son tri-
angle de comparaison Euclidien, comme on peut le voir dans la figure Figure 2.1.
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Figure 2.1: Triangle géodésique (gauche) et un triangle de comparaison correspondant
(droite) pour un espace CAT(0).

Si (E, d) est complet et CAT(0), alors il est dit espace de Hadamard. Des exemples
d’espaces de Hadamard incluent les espaces de Hilbert, les sous-ensembles convexes
de ceux-ci, ainsi que les variétés Riemanniennes simplement connexes complètes de
courbure sectionnelle négative. Il convient de noter que la sphère S2 n’est pas CAT(0).
Dans les espaces de Hadamard, il est possible de développer une théorie de l’analyse
convexe, de l’optimisation convexe et des probabilités qui généralise au cadre non-
linéaire les résultats classiques connus dans les espaces de Hilbert.

Nous supposons dans la suite que (E, d) est Hadamard. Une partie C ⊂ E est
dite géodésiquement convexe si pour tout x, y ∈ C, le segment géodésique [x, y] est
une partie de C. Étant donné une telle partie, une fonction f : C → R est dite
géodésiquement convexe si pour tout x, y ∈ C et tout géodésique γ de x à y définie sur
[0, 1], nous avons f(γt) ≤ (1− t)f(x) + tf(y). En développant (2.12) et après quelques
calculs, on obtient l’inégalité équivalente:

d(γt, z)
2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2, (2.13)

donc pour chaque z ∈ E, la fonction d(·, z)2 est géodésiquement (fortement) convexe.
Sturm [243] a mis en évidence l’attrait des espaces de Hadamard et l’importance de

l’équation (2.13) pour l’étude de la moyenne de Fréchet. Premièrement, dans ce cas,
la moyenne de Fréchet existe et est unique : M(µ) = θ⋆. Deuxièmement, en raison
de l’équation (2.13), le minimiseur θ⋆ est bien séparé (tel que défini dans la section
Section 2.2.1), et cela est quantifié par l’inégalité de variance [243, Proposition 4.4]

ϕ(θ) ≥ ϕ(θ⋆) + d(θ, θ⋆)
2 (2.14)

valide pour tout θ ∈ E.
L’évaluation de la vitesse de convergence des moyennes de Fréchet empiriques a

récemment attiré beaucoup d’attention, en particulier dans les espaces de Hadamard
sans structure Riemannienne, où les théorèmes de la limite centrale ne sont pas disponibles.
L’inégalité (2.14) est un ingrédient technique clé dans tous les travaux suivants, men-
tionnés par ordre chronologique. Ahidar-Coutrix et al. [5] examinent le cas où E est
borné et sous une hypothèse forte d’entropie métrique ils montrent qu’il existe des
constantes C1, C2 telles que pour tous n ≥ 1, t > 0,

P
(√

nd(θ̂n, θ⋆) ≥ C1max(C2,
√
t)
)
≤ 2e−t.
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Sous une hypothèse plus faible d’entropie ils obtiennent des vitesses non-paramétriques.
Schötz [230] considère le cas où E n’est pas forcément borné et il montre sous une
hypothèse faible d’entropie que pour une constante C3 et tous n ≥ 1, t > 0,

P
(√

nd(θ̂n, θ⋆) ≥ t
)
≤ C3

t2
.

Sous une hypothèse forte d’entropie, il montre aussi que pour un certain β > 0,

E[d(θ̂n, θ⋆)2] = O
( log(n)β

n

)
.

Le Gouic et al. [167] imposent que l’espace soit de courbure minorée par un certain
κ ≤ 0 (voir, e.g., [52] pour une définition) et en notant σ2 la variance de Fréchet ils
obtiennent que pour tout n ≥ 1,

E[d(θ̂n, θ⋆)2] ≤
σ2

n
. (2.15)

Yun and Park [276] montrent des résultats similaires à ceux de Schötz. Brunel et
al. [49] définissent une notion de loi sous-Gaussienne dans les espaces métriques. En
supposant que µ est sous-Gaussienne (e.g., si µ est à support borné) et que E a une
courbure minorée (pour exploiter (1.15)), ils montrent qu’il existe C4 tel que pour tous
n ≥ 1, t > 0,

P
(√

nd(θ̂n, θ⋆) ≥ σ + t
)
≤ e−C4t2 . (2.16)

Escande [88] montre par un argument de stabilité que (2.15) est valide, à une constante
universelle près, sans l’hypothèse de courbure minorée. Il obtient une borne similaire
à (2.16) sous une hypothèse de queue sous-exponentielle.

Lorsque E = Rd, il est connu que la moyenne empirique souffre d’un défaut majeur
: elle est facilement influencée par les observations aberrantes. C’est pourquoi d’autres
paramètres de tendance centrale, tels que la médiane, sont fondamentaux. Dans le
cadre non linéaire, pour p ∈ [1,∞) et en supposant que

∫
E
d(x, o)p−1dµ(x) < ∞ pour

un certain o ∈ E, le paramètre de localisation correspondant à la fonction de contraste

φ : (x, θ) 7→ d(x, θ)p − d(x, o)p

est appelé p-moyenne de Fréchet. Lorsque p = 2, il s’agit de la moyenne classique de
Fréchet, et lorsque p = 1, on parle de médiane de Fréchet. Pour p ̸= 2, les résultats
statistiques sont limités à la consistence [137, 231], et à la normalité asymptotique
lorsque E est une variété Riemannienne [48]. Il est difficile d’obtenir un analogue de
l’inégalité de variance (1.14), d’où le manque de résultats sur les vitesses de convergence.

2.3.3 Les arbres métriques

Une incarnation importante des espaces de Hadamard est l’arbre métrique. Consid-
érons un arbre T au sens de la théorie des graphes, c’est-à-dire un graphe non orienté,
connexe et acyclique avec des arêtes pondérées. Les poids sont interprétés comme les
longueurs des arêtes, de sorte que l’arbre est équipé de la métrique du plus court chemin
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d, donnant ainsi naissance à l’arbre métrique (T, d). Une construction rigoureuse et les
propriétés topologiques de T sont énoncées dans [45, p.7]. Les arbres métriques sont
importants dans la pratique car ils peuvent être utilisés pour modéliser des réseaux tels
que les réseaux routiers, fluviaux, de communication ou de distribution.

Il existe peu de littérature statistique sur les p-moyennes de Fréchet dans le cadre
spécifique des arbres métriques. Basrak [18] se concentre sur la moyenne de Fréchet
dans un arbre métrique binaire et établit un théorème central limite pour la moyenne
inductive. Risser et al. [96, 98] cherchent à calculer les moyennes de Fréchet dans les
graphes métriques, tandis que Hotz et al. [126] développent des lois des grands nombres
et des théorèmes central limite lorsque l’espace ambiant est un livre ouvert. Un cas
particulier d’un livre ouvert est la m-araignée, qui peut être considérée comme un type
particulier d’arbre métrique.

Un sujet connexe qui a suscité davantage d’attention est celui des espaces stratifiés
[138], c’est-à-dire des espaces qui sont des unions finies de sous-espaces disjoints. Des
exemples d’espaces stratifiés CAT(0) comprennent les livres ouverts [126] et l’espace des
arbres de Billera–Holmes–Vogtmann [37]. Les éléments de cet espace sont des arbres
et il a été introduit pour évaluer la proximité entre plusieurs arbres phylogénétiques.

2.3.4 Résumé de nos résultats

Le Chapitre 5 est tiré de Romon et Brunel [224], qui est actuellement en cours d’examen
dans une revue.

L’espace ambiant E que nous considérons est un arbre métrique. Nous faisons
des hypothèses raisonnables pour qu’il soit un espace compact et de Hadamard. Nous
considérons des paramètres de localisation définis via le contraste générique φ : (x, θ) 7→
ℓ
(
d(x, θ)

)
, où ℓ : [0,∞) → [0,∞) est une fonction convexe et croissante. Nous les

appelons ℓ-moyennes de Fréchet.
Nous exploitons la convexité géodésique de la fonction objectif ϕ et la géométrie de

l’arbre afin de définir une notion de dérivée directionnelle pour ϕ. Ceci nous permet
de localiser et caractériser les ℓ-moyennes de Fréchet.

L’estimation est effectuée avec le M -estimateur standard. Nous étendons aux ar-
bres métriques la notion de stickiness définie par Hotz et al. [126]: une ℓ-moyenne de
Fréchet est collante ou bien partiellement collante. Nous montrons que la stickiness
empirique est un phénomène non-asymptotique que nous quantifions avec des bornes
exponentielles. Comme corollaire immédiat nous obtenons une loi forte des grands
nombres collante.

Ensuite nous nous concentrons sur les médianes de Fréchet. Nous commençons
par fournir des résultats plus précis sur leur localisation et leur unicité. Dans le cas
partiellement collant, nous établissons des bornes non-asymptotiques et des théorèmes
central limite.
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Chapter 3

Chi-square and normal inference in
high-dimensional multi-task regression

3.1 Introduction

3.1.1 Model

We consider a multi-task linear regression model with T tasks, with n i.i.d. observations
(xi, y

(1)
i , ..., y

(T )
i ), where xi ∈ Rp is a random feature vector and y

(1)
i , ..., y

(T )
i are T

different scalar responses. We assume that on each task t = 1, ..., T , the response y(t)i

satisfies a linear model

y
(t)
i = x⊤

i β
(t) + ϵ

(t)
i , t = 1, ..., T (3.1)

where β(t) ∈ Rp is the unknown coefficient vector on the task t. Throughout, X ∈ Rn×p

is the design matrix with n rows x⊤
1 , ...,x

⊤
n . The linear models (3.1) may be rewritten

in vector and matrix form

y(t) = Xβ(t) + ε(t), Y = XB∗ +E (3.2)

where y(t) = (y
(t)
1 , ..., y

(t)
n )⊤ and ε(t) = (ϵ

(t)
1 , ..., ϵ

(t)
n )⊤ are vectors in Rn, Y ∈ Rn×T

is the response matrix with columns y(1), ...,y(T ), E ∈ Rn×T is a noise matrix with
columns ε(1), ..., ε(T ), and B∗ ∈ Rp×T is an unknown coefficient matrix with columns
β(1), ...,β(T ).

Estimation of B∗ in the above multi-task model has been well studied during the
last decade in the high-dimensional regime where p ≫ n, see for instance [174]. This
literature on multi-task learning suggests to use a joint convex optimization problem
over the tasks in order to estimate B∗, namely

B̂ = argmin
B∈Rp×T

[ 1

2nT
∥Y −XB∥2F+g(B)

]
= argmin

B∈Rp×T

[ 1

2nT

T∑
t=1

n∑
i=1

(y
(t)
i −x⊤

i Bet)
2+g(B)

]
where et ∈ RT is the t-th canonical basis vector, ∥ · ∥F is the Frobenius norm of
matrices and g : Rp×T → R is a convex penalty function. The role of the convex
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penalty g is to promote a shared structure on the coefficient vectors β(1), ...,β(T ). The
most common shared structure is that of row-sparsity where one assumes that only a
few features are relevant across all tasks: there is a support set S ⊂ {1, ..., p} of small
cardinality (relatively to n, p) such that for every task t = 1, ..., T , β(t)

j = 0 ⇐⇒ j /∈
S. Equivalently, ej

⊤B∗ = 01×T if and only if j /∈ S, i.e., only |S| rows of B∗ are
nonzero. In this case, the sparsity pattern encoded by S ⊂ {1, ..., p} is shared on all
tasks, and previous literature on estimation in this setting uses a penalty proportional
to the ℓ2,1 norm, g(B) = λ

∑p
j=1 ∥B⊤ej∥2, or alternatively its Elastic-Net version

g(B) = λ
∑p

j=1 ∥B⊤ej∥2+µ∥B∥2F for non-negative tuning parameters λ, µ ≥ 0. If the
row-sparsity assumption holds and such ℓ2,1 penalty is used, estimation of B∗ by B̂ is
improved compared to estimating β(1), ...,β(T ) separately [174].

3.1.2 Noise and residuals: non-trivial correlations for non-separable
penalties

Classical multivariate statistics studies the least-squares estimate B̂(ls) = (X⊤X)†X⊤Y ,
which corresponds to g(·) = 0 in the above minimization problem. Here, the es-
timation on two tasks is independent, as on the t-th task for t = 1, ..., T we have
B̂(ls)et = (X⊤X)†X⊤y(t) for the t-th canonical basis vector et ∈ RT : the estimator
B̂(ls)et of the unknown regression vector β(t) on the t-th task only depends on the
t-th response y(t), and is independent of the other responses (y(t′))t′∈{1,...,T}\{t}. By
independence, if the noise E has i.i.d. mean-zero entries, then

E[ε(t′)e⊤
t (Y −XB̂(ls))⊤] = 0n×n ∀t ̸= t′, (3.3)

i.e., residual and noise on two different tasks are uncorrelated. A similar story holds
for multi-task Ridge regression, which corresponds to g(B) = µ∥B∥2F in the above
minimization problem. The optimization problem is separable in the sense that

B̂(R) = argmin
B∈Rp×T

∥Y −XB∥2F
2nT

+ µ∥B∥2F and B̂(R)et = argmin
b∈Rp

∥y(t) −Xb∥22
2nT

+ µ∥b∥22

equivalently define B̂(R). It follows again that B̂(R)et only depends on the t-th re-
sponse y(t), and if E has i.i.d. mean-zero entries then (3.3) holds also for B̂(R) by
independence.

The situation is more complex for non-separable penalty functions, for instance if
the penalty is proportional to the ℓ2,1 norm, g(B) = λ

∑p
j=1 ∥B⊤ej∥2 where ej ∈ Rp is

the j-th canonical basis vector. The corresponding estimator studied throughout the
chapter is the multi-task Lasso

B̂ = argmin
B∈Rp×T

( 1

2nT
∥Y −XB∥2F + λ∥B∥2,1

)
where ∥B∥2,1 =

p∑
j=1

∥B⊤ej∥2. (3.4)

The estimate B̂et of the unknown vector β(t) on the t-th task depends in an intricate
way on all the responses including (y(t′))t′∈{1,...,T}\{t}. Note that this dependence of
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B̂et on all responses is purposeful: we hope to leverage a shared pattern on all tasks
(e.g., if B∗ is row-sparse and a sparsity pattern is shared by all β(t), t = 1, ..., T ) in
order to improve estimation compared to B̂(ls) or B̂(R). In this case, however, (3.3)
does not hold and the correlation between the residual on task t and the noise on task
t′ is non-trivial. Our results below (specifically Lemma 3.24) reveal that for t, t′ ∈ [T ],

(
(Y −XB̂)et

)⊤
ε(t

′) ≈
{
σ2(n− Âtt′) if t = t′

−σ2Âtt′ if t ̸= t′

when the noise E has i.i.d. N (0, σ2) entries and Âtt′ is the (t, t′) entry of a symmetric
matrix Â ∈ RT×T defined in Section 3.2. This matrix plays a central role in the present
chapter to derive asymptotic normality and asymptotic χ2 results.

3.1.3 Confidence intervals for linear functionals of β(1)

A first goal of the present work is to provide confidence intervals for linear functionals of
the regression vector on the first task. Throughout the chapter, regarding asymptotic
normality and confidence intervals, a ∈ Rp is a fixed direction of interest and we wish
to construct confidence intervals for a⊤β(1). For instance, the direction a ∈ Rp may
be of the following form.

(i) a canonical basis vector ej ∈ Rp. For a = ej, the goal is to construct confidence
intervals for a⊤β(1) = β

(1)
j , the coefficient of the j-th feature on the first task.

This is the classical goal in statistics where one wishes to provide inference on
the effect of the j-th covariate.

(ii) a new feature vector xnew ∈ Rp, that may for instance correspond to the char-
acteristics of a new subject whose responses y(1)new, ..., y

(T )
new are not known yet.

The goal is to provide a confidence interval for a⊤β(1) which corresponds to the
expected response of Ynew conditionally on the feature vector xnew.

We stress here that the first task (t = 1) has a special role: the unknown parameter
a⊤β(1) only involves the first unknown coefficient vector β(1) and not the other coeffi-
cient vectors β(t), t = 2, ..., T . If a single linear model y(1) = Xβ(1) + ε(1) is observed,
the construction of confidence intervals for a⊤β(1) has been extensively studied. Most
related to the present work, [280, 256, 139, 140] initially provided methodologies for
de-biasing (or de-sparsifying) the Lasso for construction of confidence intervals in a
canonical basis direction a = ej for sparsity s ≲

√
n/ log p, [141] extended the spar-

sity requirement to s ≲ n/(log p)2, [284, 42, 54, 55, 285, 26] studied estimation and
construction of confidence intervals in dense direction a ∈ Rp, and [27] extended the
de-biasing methodologies to arbitrary convex penalties.

Of course, one could throw away the responses y(2), ...,y(T ) and use only the re-
sponse y(1) with the aforementioned methodologies, since our goal is to construct con-
fidence intervals for a⊤β(1). However, throwing away the responses on tasks 2, ..., T
should intuitively lead to information loss and is not desirable.
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3.1.4 Asymptotic χ2 results and confidence ellipsoids for rows
of B∗

The second goal of this chapter is to develop confidence ellipsoids for whole rows of the
unknown matrix B∗. The j-th row of B∗ is the vector (B∗)⊤ej in RT where ej ∈ Rp

is the j-th canonical vector. Given a confidence level α ∈ (0, 1), a confidence ellipsoid
for (B∗)⊤ej is a subset Êα of RT constructed from the data such that

P
(
(B∗)⊤ej ∈ Êα

)
≥ 1− α− o(1)

where o(1) converges to 0 as n → +∞. Ideally, the confidence ellipsoid enjoys the
exact nominal coverage probability 1− α asymptotically in the sense that∣∣P((B∗)⊤ej ∈ Êα

)
− (1− α)

∣∣→ 0 (3.5)

as n→ +∞. Note that one could also consider confidence sets Êα that are not ellipsoids
(e.g., hyperrectangles); we focus here on ellipsoids as they are the natural confidence
sets stemming from χ2-distributed pivotal quantities. As in classical multivariate statis-
tics, an advantage of confidence ellipsoids is that they provide simultaneous confidence
intervals for every direction b ∈ RT , that is, P

(
∀b ∈ RT , e⊤

j B
∗b ∈ {b⊤u,u ∈ Êα}

)
→

1− α when (3.5) holds and Ê is closed and convex.
Such a confidence ellipsoid allows to perform hypothesis tests of

H0 : (B
∗)⊤ej = 0T×1 against H1 : ∥(B∗)⊤ej∥2 ≥ ρ, (3.6)

where the null hypothesis corresponds to the signal Y being independent of the j-th
feature Xej, and ρ > 0 is a separation radius. If a single task is observed (T = 1),
it is impossible to distinguish between the null βj = 0 and the alternative βj ̸= 0
with constant type I and type II errors unless |βj| ≥ cσn−1/2 for some constant c > 0.
This follows by noting that the total variation distance between yH0 = XβH0 + ε
and yH1 = XβH1 + ε converges to 0 if βH0 ,βH1 are the same except on coordinate j
where |βH0

j − βH1
j | = an with an = o(σn−1/2), ∥Xej∥2/n ≍ 1 and ε ∼ Nn(0, In×n),

for instance by Pinsker’s inequality and a standard bound on the Kullback Leibler
divergence of two multivariate normals. If several tasks are observed as in the setting
of interest here, we will see that it is possible to perform the hypothesis test (3.6)
in situations where all nonzero coefficients of (B∗)⊤ej are of order o(σn−1/2), i.e., of
indistinguishable order when a single task is observed.

If asymptotic normality results are available for each of the T individual coefficients
of (B∗)⊤ej (for instance such as those described in the previous subsection), a natural
strategy to construct confidence ellipsoids is to sum the square of the T asymptotically
normal random variables and hope that the resulting sum has approximately the χ2

distribution with T degrees-of-freedom. However, throughout the chapter the num-
ber of tasks T is allowed to grow to infinity with n which results in some challenges
regarding this strategy, as pointed out by [194]. For the sake of illustrating the result-
ing difficulty, assume that we have established the asymptotic normality of T pivotal
random variables U1, ..., UT by proving decompositions of the form Ut = (σ̂/σ)Zt + Bt

where Zt ∼ N (0, 1) and the convergence in probability σ̂/σ
P−→1 and Bt

P−→0 hold, so
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that Slutsky’s theorem ensures that the pivotal quantities are asymptotically normal
with Ut

d−→N (0, 1). Denoting by χ2
T =

∑T
t=1 Z

2
t , summing the squares of the pivotal

quantities and applying the triangle inequality for the Euclidean norm on RT yields∣∣√∑T
t=1 U

2
t −

√
χ2
T

∣∣ ≤ |σ̂/σ − 1|
√
χ2
T +

√∑T
t=1B

2
t . (3.7)

While E[(χ2
T )

1/2] is of order
√
T , the variance and quantiles of (χ2

T )
1/2 are of constant

order (specifically, P((χ2
T )

1/2 −
√
T ≤ zα/

√
2) → 1 − α holds by (3.87) below, and

Var[(χ2
T )

1/2] → 1/2 by [128]). This implies that a sufficient condition that ensures that
(
∑T

t=1 U
2
t )

1/2 and (χ2
T )

1/2 asymptotically share the same quantiles is that
∑T

t=1B
2
t

P−→0

and
√
T |σ̂/σ − 1| P−→0. While B1

P−→0 and σ̂/σ
P−→1 are sufficient to grant asymptotic

normality for U1 on the first task, the conditions
√
T |σ̂/σ−1| P−→0 and (

∑T
t=1B

2
t )

1/2 P−→0
are much more stringent as they involve the number of tasks T .

3.1.5 Asymptotics and assumptions

We will derive asymptotic normality and asymptotic χ2
T results for a sequence of multi-

task regression problems of increasing dimensions. For each n, we consider the multi-
task linear model (3.2) and and the multi-task Lasso estimate B̂ in (3.4) where B∗,
the number of tasks T , dimension p, tuning parameter λ and row-sparsity s are all
functions of n. The dependence in n is implicit and will be omitted to avoid notational
burden. We will assume that the sequence of regression problems satisfies the following.

Assumption (A1). (i) X ∈ Rn×p is a Gaussian design matrix with i.i.d. Np(0,Σ)
rows;

(ii) B∗ ∈ Rp×T is a row-sparse unknown matrix with at most s nonzero rows;

(iii) E is a Gaussian noise matrix with i.i.d. N (0, σ2) entries;

(iv) {s, n, T, p} are positive and satisfy s
n
(T + log p

s
) → 0 and n ≤ p, this implies

s
p
∨ T

n
→ 0;

(v) The spectrum of Σ is bounded: Cmin ≤ ϕmin(Σ) ≤ ϕmax(Σ) ≤ Cmax for some
constants 0 < Cmin ≤ Cmax which are independent of n, p, s, T ;

(vi) Σ satisfies maxj=1,...,p Σjj ≤ 1;

(vii) For two constants η1, η2 > 0, the tuning parameter λ in (3.4) is given by

λ = (1 + η2)λ0, where λ0 =
(

max
j=1,...,p

Σ
1/2
jj

)σ(1 + η1)√
nT

(
1 +

√
(2/T ) log(p/s)

)
. (3.8)
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3.1.6 Related literature

For integers n̄, p̄ ≥ 1, the multi-task setting above bears resemblance with the single-
response linear model of the form

ȳ = X̄β̄ + ε̄ (3.9)

where y ∈ Rn̄, ε̄ ∈ Rn̄, X̄ ∈ Rn̄×p̄, and the features {1, ..., p̄} are partitioned into p
groups with equal sizes. Indeed, with p̄ = pT , n̄ = nT and by vectorizing the matrices
in (3.1), our multi-task setting is in one-to-one correspondence with the single-response
linear model (3.9) with ȳ = vec(Y ), ε̄ = vec(E), X̄ block diagonal with T blocks
each equal to X, and the partition (G1, ..., Gp) of {1, ..., p̄} into p groups is given by
Gj = {j + (t − 1)p, t = 1, ..., T}. With this correspondence, the estimator B̂ is the
group Lasso ˆ̄β = argminb̄∈Rp̄ ∥ȳ − X̄b̄∥2/(2n̄) + λ∥b̄∥2,1 where ∥b̄∥2,1 =

∑p
j=1 ∥b̄Gj

∥2.
Inference for grouped variables in a single-response linear model (3.9) focuses on

estimation, hypothesis tests or confidence sets for the vector β̄Gj
for a group Gj ⊂

{1, ..., p̄} of interest. In the single task setting (3.9) with grouped variables, [194] ex-
tends the de-biasing methodology in [280, 256] to inference for grouped variables and
provides χ2 asymptotic distribution results. The paper [194] already describes some
challenges of chi-square inference in high-dimension (cf. the discussion after (3.7)); the
multi-task problem of the present work shares some of these challenges, however our
approach and proofs have no overlap with that of [194]. The papers [242, 255] give
a different extension of the de-biasing methodology of [280, 256] to the group setting,
again based on the group Lasso, but here by estimation of the inverse covariance ma-
trix restricted to the group of interest with a multi-task estimator penalized by the
nuclear norm. False Discovery Rate control in single-task linear models with grouped
variables has been studied in [50] with a group SLOPE estimator. Under weak assump-
tions (in particular, no assumption on X), [187] provides an approach to inference for
grouped variables, although the resulting confidence regions are conservative. The pa-
pers [179, 180] study group inference in a sequence rejection fashion when the groups
are hierarchically ordered. Bootstrap methods based on the group Lasso are studied in
[283], without trying to remove the bias. The paper [107] develops conservative infer-
ence methods for quantities of the form (β̄Gj

)⊤Aβ̄Gj
for a group Gj ⊂ [p] of interest

and a given positive definite matrix A ∈ R|Gj |×|Gj |, based on the quadratic program de-
biasing methodology given in [280, 139]. Finally, [27] introduces a degrees-of-freedom
adjustment for the group Lasso to perform inference on a single coordinate or linear
form of the unknown regression vector in (3.9).

Some papers focus on estimation and inference in the multi-task model (3.2). The
papers [255, 30] study multi-task models of the form (3.2) where the noise E ∈ Rn×T

has i.i.d. rows, and the entries within each row are correlated. A multi-task extension
of the square-root Lasso is developed to concurrently estimate B∗ and the correlations
in the noise E. Such results on estimating the correlations of the entries in E are useful
to de-bias the group Lasso in the single-task model [255]. Support recovery through
bounds on the group norm ∥B∥2,∞ = supj∈[p] ∥E⊤ej∥2 is studied in [183] under a
mutual incoherence assumption on X. The mutual incoherence assumption requires a
row-sparsity level s ≲

√
n if X has i.i.d. entries. Closest to the setup and goals of the
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present work, [67] extends the de-biasing methodology of [280, 256] to the multi-task
setting, using the nodewise Lasso to estimate a column of the precision matrix of the
design. This approach requires row-sparsity of B∗ of order s ≲

√
n up to logarithmic

factors. Although our approach also involves the nodewise Lasso to estimate columns
of the precision matrix, the de-biasing methodology significantly differs from [67] and
cannot be seen as a straightforward extension of [280, 256]: our approach requires the
introduction of a data-driven symmetric matrix Â of size T × T which captures the
interactions between the residuals on different tasks. Introduction of this novel object
lets us significantly relax the requirement on the row-sparsity of B∗ while obtaining
normal and χ2

T inference results, that are proved to be non-conservative under some
assumption on T, s, n, p.

3.1.7 Adjustments in high-dimensional inference

In single-task models, recent literature on high-dimensional inference has highlighted
the necessity to adjust classical inference principles with scalar adjustments. To de-
scribe such adjustments consider a single-task linear model y = Xβ + ε with β ∈ Rp,
Gaussian noise ε ∼ Nn(0, σ

2In×n) and X with i.i.d. Np(0,Σ) rows, where an initial
estimator β̂(init) is available. If one is interested in confidence intervals for the projec-
tion a⊤β in some direction a normalized with ∥Σ−1/2a∥2 = 1, a 1-step MLE correction
in direction Σ−1a [278], i.e., maximizing the likelihood over the one-dimensional model
{β̂(init)

+ uΣ−1a, u ∈ R} yields the corrected estimate

a⊤β(init) + z⊤
0 (y −Xβ̂

(init)
)∥z0∥−2

2 (3.10)

where z0 = XΣ−1a when ∥Σ−1/2a∥2 = 1; and the direction Σ−1a is the one that
maximizes the Fisher information [278]. (Since ∥z0∥22 ∼ χ2

n concentrates around n,
we allow ourselves to replace ∥z0∥22 by n in (3.10) in this informal discussion). In
high dimensions, this general principle requires a modification that accounts for the
degrees-of-freedom of β̂(init): [140, 26] for the Lasso and [27] for general penalty suggest
to amplify the correction with the degrees-of-freedom adjustment (1− d̂f/n)−1 and to
use the estimate

a⊤β(init) + (1− d̂f/n)−1z⊤
0 (y −Xβ̂

(init)
)n−1 (3.11)

instead of (3.10). If β̂(init) is the Lasso, the adjustment (1 − d̂f/n)−1 is required for
efficiency for large sparsity levels [26]. For the Lasso, the data-driven adjustment
(1− d̂f/n)−1 may be replaced by a deterministic scalar adjustment, i.e.,

a⊤β(init) + (1− δ−1s∗)
−1z⊤

0 (y −Xβ̂
(init)

)n−1 (3.12)

where δ = n/p and s∗ is the scalar parameter obtained after solving the system of two
equations with two unknowns in [193, Proposition 3.1]. The correspondence between
d̂f/n and s∗ can be seen in [193, Theorem F.1] or [62, Section 3.3]. This system of
two nonlinear equations first appeared in [19] for the Lasso and can be extended to
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permutation invariant penalty functions (see [61] and the references therein) and robust
M-estimators [250].

We are not aware of previous proposals to study such high-dimensional adjustments
in the multi-task setting, e.g., by extending the data-driven adjustment in (3.11) or
the deterministic one in (3.12). One goal of our work is to fill this gap.

3.1.8 Contributions

To summarize Sections 3.1.3 and 3.1.4, the inferential goals of the chapter are twofold:

(i) To construct valid confidence intervals for a linear functional a⊤β(1) of the un-
known coefficient on the first task, by leveraging responses on all tasks simulta-
neously.

(ii) To construct valid confidence ellipsoids for rows e⊤
j B

∗ ∈ R1×T of the unknown
coefficient matrix B∗, for instance to provide hypothesis tests on the nullity of
the j-th row of B∗, or equivalently testing that the signal does not depend on
the j-th covariate.

In order to achieve these statistical goals, we introduce a new object, the data-
driven symmetric matrix Â ∈ RT×T . Introduction of the matrix Â is key to equip
the estimator B̂ with the inference capabilities (i) and (ii) above, as the theory and
simulations of the next sections will show. This data-driven matrix Â generalizes, to
the multi-task setting, the effective degrees-of-freedom and other scalar adjustments
in single-task linear models discussed in the previous subsection. Since Â is symmet-
ric, T (T + 1)/2 scalar adjustments are necessary in the multi-task setting and that
number of adjustments is unbounded if T → +∞ as a function of n. The fact that a
growing, unbounded number of scalar adjustments would be necessary to achieve the
above inference capabilities in the multi-task setting was surprising—at least to us—,
since existing works on adjustments in high-dimensional statistics so far only require a
bounded number of scalar adjustments.

Our work also includes contributions related to the performance of the multi-task
estimator B̂ in (3.4). We improve the logarithmic dependence in tuning parameter
λ and the known upper bounds on ∥B̂ − B∗∥F and ∥X(B̂ − B∗)∥F compared to
[174]. We also develop tools to show that the random matrix X enjoys a multi-task
Restricted Eigenvalue (RE) condition from [35]. Although the single-task case follows
in a straightforward manner from Gordon’s escape through a mesh theorem (e.g., [220]),
the multi-task version of the RE condition for the random matrix X requires different
tools.

3.1.9 Organization

The rest of the chapter is organized as follows. The next section summarizes notation.
Section 3.2 describes a new quantity, the interaction matrix Â that plays a major
role in our estimates and confidence intervals. Section 3.3.1 constructs confidence
intervals for a⊤β(1) when the covariance matrix Σ of the design is known. Section 3.3.2
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extends these results and methodologies when Σ is unknown. Section 3.4 develops
confidence ellipsoids for rows of B∗. Section 3.5 provides an efficient way of computing
the interaction matrix. Section 3.6 presents numerical experiments that corroborate
our theoretical findings. The proofs are deferred to appendices and some intuition
behind the main technical argument is given in Section 3.7.

3.1.10 Notation

Throughout the chapter, the linear model vector and matrix notation (3.2) holds. T ,
p and s are all non-decreasing functions of n. In all the displays of convergence (e.g.,
→, lim, o(·), O(·)), we implicitly mean that n goes to ∞. Convergence in distribution
and in probability are denoted by d−→ and P−→.

Estimators of the unknown B∗ are denoted by B̂. For any real a, a+ = max(0, a)
and [k] = {1, ..., k} for any integer k, e.g., [n], [p], [T ]. We use indices i, i′, i1, i2, ... to
sum or loop over [n] (i.e., over the n observations), indices t, t′, t1, t2, ... to sum or loop
over [T ] (i.e., over the T tasks), indices j, j′, j1, j2, ... to sum or loop over [p] (i.e., the p
covariates). The vectors ej ∈ Rp, et ∈ RT , ei ∈ Rn denote the canonical basis vector of
the corresponding index; the size of such canonical vector will be made explicit if it is
not clear from context. The identity matrices of sizes p×p, n×n, T ×T are Ip×p, In×n

and IT×T respectively and 0k×q is the zero matrix with k rows and q columns.
For any q ≥ 1, ∥ · ∥q is the ℓq-norm of vector, e.g., ∥ · ∥2 is the Euclidean norm.

For any matrix M , ∥M∥F is the Frobenius norm and ∥M∥op = sup∥u∥2=1 ∥Mu∥2 the
operator norm, also known as the spectral norm. If M is symmetric, ϕmin(M ) (resp.
ϕmax(M )) denotes the smallest (resp. largest) eigenvalue of M . The Moore-Penrose
pseudoinverse of matrix M is denoted by M †. The Kronecker product between two
matrices U , V with U ∈ Rk×q is

U⊗V :=

u11V . . . u1qV
...

...
...

uk1V . . . ukqV

 so that IT×T ⊗X =


X 0n×p . . . 0n×p

0n×p X . . . 0n×p
...

...
...

...
0n×p . . . . . .0n×p X


for X ∈ Rn×p. We will use the mixed product property of Kronecker products,

(U ⊗ V )(P ⊗Q) = (UP )⊗ (V Q), (U ⊗ V )† = U † ⊗ V † (3.13)

whenever the dimensions are such that the matrix products UP and V Q make sense.
The following trace property also holds

Tr[U ⊗ V ] = Tr[U ] Tr[V ]. (3.14)

If ∥ · ∥ denotes a Schatten norm (e.g., Frobenius or spectral norm), then for any U , V
we have

∥U ⊗ V ∥ = ∥U∥∥V ∥. (3.15)

We define the vectorization vec(U) of any matrix U ∈ Rm×q by stacking vertically the
columns of U into a column vector in Rqm×1, i.e.,

vec(A)⊤ =
(
u11 u21 . . . um1 u12 u22 . . . um2 . . . u1q u2q . . . umq

)
.
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For any three matrices A,B,C such that the matrix product ABC makes sense, the
above vectorization operator satisfies

vec(ABC) = (C⊤ ⊗A)vec(B). (3.16)

These many properties of Kronecker products are referenced in Section 4.2 of [122].
We consider restrictions of vectors (respectively matrices) by zeroing the corre-

sponding entries (respectively columns). More precisely, if v ∈ Rp and B ⊂ [p] then
vB ∈ Rp is the vector with (vB)j = 0 if j /∈ B and (vB)j = vj if j ∈ B. If X ∈ Rn×p

and B ⊂ [p], XB ∈ Rn×p is a matrix of the same dimension as X such that (XB)ej = 0
if j /∈ B and (XB)ej = Xej if j ∈ B, i.e., XB is a copy of X after having zeroed the
columns not indexed in B. Finally, I{Ω} denotes the indicator function of an event Ω,
and I{i ∈ B} = 1 if i ∈ B and I{i ∈ B} = 0 if i /∈ B is the indicator that some index
i belongs to B.

3.2 The interaction matrix Â of the Multi-Task Lasso
estimator

We consider the multi-task Lasso estimator, with ℓ2,1 penalty, given (3.4) for some
tuning parameter λ > 0. Let Ŝ = {j ∈ [p] : B̂⊤ej ̸= 0} denote the set of nonzero rows
of B̂. We will refer to Ŝ as the support of B̂ and denote by |Ŝ| its cardinality. The
above estimator is the one commonly used in the multi-task learning literature under a
row-sparsity assumption on B∗, see, e.g., [174]. Recall that X Ŝ ∈ Rn×p is a copy of X
obtained after zeroing the columns not belonging to Ŝ. Define X̃ := IT×T⊗X Ŝ where ⊗
denotes the Kronecker product defined in Section 3.1.10, so that X̃ ∈ RnT×pT is block-
diagonal with T blocks, each equal to X Ŝ. Consequently X̃⊤X̃ = IT×T ⊗ (X⊤

Ŝ
X Ŝ) ∈

R(pT )×(pT ) is also block-diagonal with T blocks equal to X⊤
Ŝ
X Ŝ. For any j ∈ Ŝ, define

the matrix

H(j) := λ∥B̂⊤ej∥−1
2

(
IT×T − B̂⊤eje

⊤
j B̂ ∥B̂⊤ej∥−2

2

)
∈ RT×T (3.17)

and note that H(j) is proportional to an orthogonal projection of rank T − 1. The
matrix H(j) is the Hessian of u 7→ λ∥u∥2 at u = B̂⊤ej. Finally, let H̃ ∈ R(pT )×(pT ) be
the matrix defined by H̃ :=

∑
j∈Ŝ H

(j) ⊗ (eje
⊤
j ).

Definition 3.1. The interaction matrix Â ∈ RT×T of the estimator B̂ in (3.4) is
defined entrywise by

Âtt′ := Tr

[ 0n×p(t−1) X Ŝ 0n×p(T−t)

] [
X̃⊤X̃ + nTH̃

]†  0p(t′−1)×n

(X Ŝ)
⊤

0p(T−t′)×n


 (3.18)

for all t, t′ ∈ [T ], where † denotes the Moore-Penrose inverse. Equivalently, if u,v ∈ RT

then

u⊤Âv = Tr
( [

u1X Ŝ u2X Ŝ . . . uTX Ŝ

] [
X̃⊤X̃ + nTH̃

]† [
v1X Ŝ v2X Ŝ . . . vTX Ŝ

]⊤ )
,
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or with Kronecker product notation,

u⊤Âv = Tr
[
(u⊤ ⊗X Ŝ)[X̃

⊤X̃ + nTH̃ ]†(v ⊗ (X Ŝ)
⊤)
]
. (3.19)

Observe that
∑

j∈Ŝ(eje
⊤
j )⊗H(j) is a block-diagonal matrix with p diagonal blocks

equal to I{j ∈ Ŝ}H(j). For A,B any square matrices, A ⊗ B = P (B ⊗ A)P⊤

holds for a permutation matrix P that only depends on the dimensions of A and B.
This permutation P is particularly simple and known as a perfect shuffle. It follows
that PH̃P⊤ is block diagonal with p diagonal blocks for some permutation matrix
P ∈ RpT×pT . Thus the matrix

X̃⊤X̃ + nTH̃ ∈ RpT×pT (3.20)

appearing in (3.18)-(3.19) is the sum of two matrices of size pT × pT , each summand
being block diagonal but in a different basis. If λ = 0 then H̃ = 0 and Â is diagonal as
X̃⊤X̃ + nTH̃ can be inverted by block. This corresponds to the unregularized least-
squares estimate B̂(ls) discussed in (3.1.2) with B̂(ls)et depending on the t-th response
y(t) only. In the case λ > 0 of interest here, the matrix H̃ induces nonzero entries
outside of the T diagonal blocks of X̃⊤X̃, the matrix (3.20) is not diagonal by block
and the resulting matrix Â is not diagonal. Additional structure in (3.20) and Â is
studied in Section 3.5, which yields an efficient and practical algorithm to compute Â.

The interaction matrix plays a major role in the construction of our confidence
intervals for a⊤β(1) as well as for chi-square inference regions for rows of B∗. A high-
level interpretation of its role is that Â captures the correlation between the residuals
on different tasks. The following proposition summarizes some useful properties of Â.
Result (iii) is important as our confidence interval for a⊤β(1) defined in the next section
will involve the inverse of IT×T − Â/n. Proposition 3.2 is proved in Section 3.8 of the
supplement.

Proposition 3.2. Let Â be defined by (3.18). Then
(i) Â is symmetric and positive semi-definite.
(ii) If X Ŝ is rank |Ŝ| then the spectral norm of Â is bounded from above as ∥Â∥op ≤

|Ŝ|.
(iii) If X Ŝ is rank |Ŝ| and |Ŝ|/n < 1 then IT×T − Â/n is positive-definite and

∥IT×T − (IT×T − Â/n)−1∥op ≤ (|Ŝ|/n)/(1− |Ŝ|/n).

3.3 Asymptotic normality and confidence intervals in
the multi-task setting

3.3.1 Known Σ: Pivotal random variable, asymptotic normal-
ity and confidence intervals

We assume throughout this section that the direction a of interest is normalized with
∥Σ−1/2a∥2 = 1. This normalization assumption is relaxed in the next Section 3.3.2
where we develop a methodology for unknown Σ. If Σ is known, our main result is the
following where Â denotes the interaction matrix (3.18).
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Theorem 3.3. Let Assumption (A1) be fulfilled. Assume that ∥Σ−1/2a∥22 = 1. If
z0 = XΣ−1a then

naT (B̂ −B∗)b+ zT
0 (Y −XB̂)(IT×T − Â/n)−1b

∥(Y −XB̂)(IT×T − Â/n)−1b∥2
d−→ N (0, 1) (3.21)

for any b ∈ RT . Hence for b = e1 ∈ RT , the parameter a⊤β(1) of interest satisfies

n(aT B̂e1 − a⊤β(1)) + zT
0 (Y −XB̂)(IT×T − Â/n)−1e1

∥(Y −XB̂)(IT×T − Â/n)−1e1∥2
d−→ N (0, 1). (3.22)

Theorem 3.3 is proved in Section 3.11. The left-hand sides of both displays in
Theorem 3.3 can be interpreted as Z-scores that have asymptotically standard normal
distribution. In the second display, the only unknown quantity on the left hand side is
a⊤β(1), the parameter of interest (while in the first display, the only unknown quantity
is the scalar a⊤B∗b). Consequently if zα/2 is the 1−α/2 quantile of the standard normal
distribution such that P(|N (0, 1)| ≤ zα/2) = 1 − α, an asymptotic 1 − α confidence
interval for a⊤β(1) is given by [Lα

−, L
α
+] where

Lα
± = aT B̂e1︸ ︷︷ ︸

initial
estimate

+
z⊤
0 (Y −XB̂)(IT×T − Â

n
)−1e1

n︸ ︷︷ ︸
bias correction using the interaction matrix

± zα/2∥(Y −XB̂)(IT×T − Â
n
)−1e1∥2

n︸ ︷︷ ︸
confidence interval half-length

.

(3.22) in Theorem 3.3 states that P(a⊤β(1) ∈ [Lα
−, L

α
+]) → (1− α) as n, p→ +∞.

The confidence interval is centered at aT B̂e1 (which can be interpreted as the
initial estimate of a⊤β(1) given by the estimator B̂ in (3.4)) plus a de-biasing correction
zT
0 (Y −XB̂)(IT×T−Â/n)−1 that involves the interaction matrix Â through the matrix

inverse
(IT×T − Â/n)−1. (3.23)

The fact that penalized estimators such as (3.4) require a de-biasing correction should
be expected since it is already the case for T = 1 for the Lasso [280, 256, 139, 140, 141,
26] and any regularized least-squares [27]. However, the apparition in the de-biasing
correction of the interaction matrix through the matrix inverse (3.23) is surprising
at least to us: we did not expect the multi-task de-biasing correction to require a
matrix inversion such as (3.23) when initially tackling this problem. The length of the
confidence interval above is 2zα/2n

−1∥(Y − XB̂)(IT×T − Â/n)−1e1∥2 when b = e1,
and an estimate of this norm is given by the following theorem.

Theorem 3.4. Let the assumptions and setting of Theorem 3.3 be fulfilled. Then
∥(Y −XB̂)(IT×T − Â/n)−1b∥22/n

P−→ σ2 when ∥b∥2 = 1.

Consequently the length of the confidence interval is approximately 2zα/2σn
−1/2

which is the typical length for two-sided confidence intervals for an unknown mean µ
when observing i.i.d. Y1, ..., Yn with E[Yi] = µ,Var[Yi] = σ2. Theorems 3.3 and 3.4 are
proved together in Section 3.11.
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Comparison with single-task Lasso on the first task. It is instructive to com-
pare the above confidence interval with the confidence interval induced by a single-
task Lasso estimator computed on (X,y(1)), i.e., when throwing away the responses
y(2), ...,y(T ) on tasks 2, ..., T . This is also a good opportunity to analyse the form of Â
and the matrix inversion (3.23) in the degenerate case where a single task is observed.

For T = 1, a response vector y(1) = Xβ(1)+ε(1) in Rn is observed and the estimator
(3.4) reduces to the usual Lasso with response vector y(1),

β̂
L
= argmin

b∈Rp

∥y(1) −Xb∥2/(2n) + λ∥b∥1.

The asymptotic normality result in Theorem 3.3 for b = 1 asserts that

na⊤(β̂
L − β(1)) + (1− Â11/n)

−1z⊤
0 (y

(1) −Xβ̂
L
)

(1− Â11/n)−1∥y(1) −Xβ̂
L∥2

d−→ N (0, 1). (3.24)

In the degenerate case T = 1, the matrices in (3.17) are all zeros and the matrix Â
reduces to a scalar Â11 equal to Tr[X(X⊤

ŜLX ŜL)†X
⊤] = |ŜL| where ŜL is the support

of the Lasso β̂
L
. Here Â11 is the usual effective degrees-of-freedom for the Lasso. The

factor (1−Â11/n)
−1 = (1−|ŜL|/n)−1 in (3.24) is the degrees-of-freedom adjustment for

the Lasso studied in [26], which is required for the asymptotic normality result (3.24)
when s ≳ n2/3 [26]. So Theorem 3.3 reduces to the asymptotic normality result of [26]
in the degenerate case T = 1, and in this case the matrix inversion (3.23) reduces to
a degrees-of-freedom adjustment through the scalar multiplication by (1 − |ŜL|/n)−1.
The length of the resulting confidence interval for a⊤β(1) when T = 1 (or when the
tasks 2, ..., T ) are thrown away) is then

2zα/2n
−1∥y(1) −Xβ̂

L∥2(1− |ŜL|/n)−1. (3.25)

We may compare the lengths of the two confidence intervals:

• The confidence interval [Lα
−, L

α
+] based on (3.22) using the responses on all tasks

1, ..., T with length 2n−1zα/2∥(Y −XB̂)(IT×T − Â/n)−1e1∥2, and

• The confidence interval based on (3.24) obtained by throwing away the responses
on tasks 2, ..., T with length (3.25).

The length of the confidence interval based on B̂ and the responses on all tasks 1, ..., T
is smaller than the length (3.25) only when

∥y(1) −Xβ̂
L∥2(1− |ŜL|/n)−1 > ∥(Y −XB̂)(IT×T − Â/n)−1e1∥2. (3.26)

Our simulations in Section 3.6 (see Figure 3.5) reveal that (3.26) holds, in some situ-
ations with significant margins, when s is not too large. Since the comparison (3.26)
can be performed by looking at the data, the practitioner should choose the multi-task
confidence interval based on (3.22) over the single-task confidence interval based on
(3.24) when (3.26) holds. When performing this comparison, two tests are constructed
which calls for a Bonferroni correction to avoid invalid coverage due to multiple testing.
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3.3.2 Unknown Σ: Pivotal random variable, asymptotic nor-
mality and confidence intervals

The knowledge of Σ is not available in most practical situations and the methodology
of the previous subsection cannot be applied. Indeed the left hand sides in Theorem 3.3
involve z0 = XΣ−1a which cannot be directly constructed from the data when Σ un-
known. Another issue that arises when Σ is unknown is that one cannot verify the
normalization ∥Σ−1/2a∥2 = 1 required in Theorem 3.3. Intuitively, though, if it was
possible to estimate both z0 = XΣ−1a and ∥Σ−1/2a∥2 fast enough, replacing these
quantities by their estimates in (3.22) should not break asymptotic normality. Follow-
ing ideas from the early de-biasing literature [280, 140, 256], we consider a direction

a = ej (3.27)

for some fixed covariate j ∈ {1, ..., p} and compute the nodewise Lasso

γ̂(j) = argmin
γ∈Rp

∥Xej −X−jγ∥22/(2n) + τ̂j(1 + η)
√

(2/n) log p∥γ∥1 (3.28)

for regressing Xej on X−j, where X−j ∈ Rn×p is the matrix X with j-th column
replaced by a column of zeros, τ̂j is a consistent estimate of ∥Σ−1/2ej∥−1

2 and η > 0 is
a small constant. Alternatively, one may use the scale invariant version of (3.28) again
for regressing Xej on X−j,

γ̂(j) = argmin
γ∈Rp:γj=0

(
∥Xej −X−jγ∥22/(2n)

)1/2
+ (1 + η)

√
(2/n) log p∥γ∥1, (3.29)

known as Scaled lasso [244] or square-root Lasso [28], and (3.29) is equal to (3.28) with
τ̂j = ∥Xej −X−jγ̂

(j)∥2/
√
n. We finally set

ẑj = Xej −X−jγ̂
(j). (3.30)

This corresponds to the residuals of the estimator γ̂(j) in the linear model

Xej = X−jγ
(j) + ε(j) (3.31)

with response vector Xej ∈ Rn, design matrix X−j, true regression vector γ(j) :=
−∥Σ−1/2ej∥−2

2 (Ip − eje
⊤
j )Σ

−1ej (so that e⊤
j γ

(j) = 0 and e⊤
k γ

(j) = −(Σ−1)−1
jj (Σ

−1)jk
for k ∈ [p] \ {j}), and Gaussian noise vector ε(j) := ∥Σ−1/2ej∥−2

2 XΣ−1ej independent
of X−j with distribution ε(j) ∼ Nn(0, τ

2
j In×n) where τ 2j := ∥Σ−1/2ej∥−2

2 = (Σ−1)−1
jj .

The relationship between Σ−1 and (γ(j), τj) is the well known connection between
precision matrix and linear regression for multivariate normal random vectors (see,
e.g., [188, 245]).

The estimators γ̂(j) in (3.28) and (3.29) both satisfy inequalities

∥X⊤
−j(Xej −X−jγ̂

(j))∥∞ = ∥X⊤
−jẑj∥∞ ≤ OP(1)τj

√
n log p, (3.32)

∥γ̂(j) − γ(j)∥1 ≤ OP(1)∥Σ−1∥op∥γ(j)∥0τj
√

log(p)/n (3.33)
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provided that ∥Σ−1∥op∥γ(j)∥0 log(p)/n→ 0. Inequality (3.33) is the usual ℓ1 estimation
rate for the Lasso [35] or the Scaled Lasso [245, 28], and ∥Σ−1∥−1

op represents a high-
probability lower bound on the restricted eigenvalue in the linear model (3.31) [220].
Inequality (3.32) follows from the KKT conditions of (3.28) for the Lasso, and from
the KKT conditions of (3.29) combined with τ̂j/τj

P−→1 which holds thanks to properties
of the Scaled or square root Lasso [245, 28]. Inequalities (3.32)-(3.33) are the only
properties of γ̂(j) that we will use in the proof of the following result. Other estimators
γ̂(j) could be used, for instance ones based on the Dantzig selector, as long as (3.32)-
(3.33) are satisfied.

Theorem 3.5. Consider a canonical basis direction ej ∈ Rp for some j ∈ [p] and let
Assumption (A1) be fulfilled. Additionally assume that the sparsity of Σ−1ej satisfies
either

n−1/2∥Σ−1ej∥0
√
[T + log(p/s)] log p→ 0. (3.34)

or

∥Σ−1ej∥0 log(p)/n→ 0 and s
√

log(p)[T + log(p/s)]/n→ 0. (3.35)

Then for any estimator γ̂(j) satisfying (3.32)-(3.33) and every fixed b ∈ RT we have

ne⊤
j (B̂ −B∗)b+ n(ẑ⊤

j Xej)
−1ẑ⊤

j (Y −XB̂)(IT×T − Â/n)−1b

(τj)−1 ∥(Y −XB̂)(IT×T − Â/n)−1b∥2
d−→ N (0, 1). (3.36)

Asymptotic normality (3.36) still holds if τj in the denominator is replaced by either
(ẑ⊤

j Xej/n)
1/2 or τ̂j = (∥ẑj∥2/

√
n).

Theorem 3.5 is proved in Section 3.13.1.

3.4 Confidence ellipsoids for rows of B∗

3.4.1 Known Σ

We first construct confidence ellipsoids with the knowledge of Σ.

Theorem 3.6. Define the observable positive semi-definite matrix Γ̂ = (Y −XB̂)⊤(Y −
XB̂) ∈ RT×T as well as

ξ = (Y −XB̂)⊤z0 + (nIT×T − Â)(B̂ −B∗)⊤a. (3.37)

Then under Assumption (A1), there exists a random variable χ2
T with chi-square dis-

tribution with T degrees of freedom such that√
1− T

n

∥∥∥Γ̂−1/2
ξ
∥∥∥
2
−
√
χ2
T ≤ oP(1) +OP

(
min

{ T√
n
,
s2 log2(p/s)

n
√
T

})
as well as

−oP(1)−OP

( T√
n
+
sT + s log(p/s)

n

√
T
)
≤
√

1− T
n

∥∥∥Γ̂−1/2
ξ
∥∥∥
2
−
√
χ2
T .

Consequently,
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(i) (1 − T
n
)
1
2∥Γ̂−1/2ξ∥2 − (χ2

T )
1/2 ≤ oP(1) holds if additionally min{T 2

n
, log

8 p
n

} → 0,
and

(ii) (1− T
n
)
1
2∥Γ̂−1/2ξ∥2−(χ2

T )
1/2 ≥ oP(1) holds if additionally T 2

n
+ sT+s log(p/s)

n

√
T → 0.

Theorem 3.6 is proved in Section 3.12. The following proposition with Wn = (1 −
T
n
)1/2∥Γ̂−1/2ξ∥2 relates the (1−α)-quantile of ∥Γ̂−1/2ξ∥2 to that of (χ2

T )
1/2 when either

(i) or (ii) above holds.

Proposition 3.7. Let (Wn)n≥1 be a sequence of random random variables and χ2
T a

sequence of random variables with chi-square distribution with T degrees-of-freedom,
where T = Tn is function of n (in particular, T → +∞ as n → +∞ is allowed). If
α ∈ (0, 1) is a fixed constant not depending on n, T and qT,α > 0 is the quantile defined
by P((χ2

T )
1/2 ≤ qT,α) = 1− α then

(i) Wn − (χ2
T )

1/2 ≤ oP(1) implies that P(Wn ≤ qT,α) ≥ 1− α− o(1) and

(ii) Wn − (χ2
T )

1/2 ≥ −oP(1) implies that P(Wn ≤ qT,α) ≤ 1− α + o(1).

Proposition 3.7 is proved in Section 3.12. If T → +∞, the order of qT,α is given by

qT,α −
√
T → zα/

√
2 (3.38)

where zα is the standard normal quantile defined by
∫ zα
−∞(

√
2π)−1e−u2/2du = 1− α. A

short proof of (3.38) is given around (3.87); see [194] for related discussions. However,
using qT,α itself to construct confidence sets should be preferred in practice to avoid
the approximation error in (3.38).

Combining the above two results provides confidence ellipsoids for the rows of B∗,
or more generally for the unknown vector (B∗)⊤a ∈ RT for a fixed direction a ∈ Rp of
interest. Let Êα be the subset of RT defined by

Êα :=
{
θ ∈ RT : (1− T

n
)1/2∥Γ̂−1/2

[
(Y −XB̂)⊤z0+(nIT×T −Â)(B̂

⊤
a−θ)

]
∥2 ≤ qT,α

}
.

Since Êα = {θ ∈ RT : (θ − u)⊤C(θ − u) ≤ 1} where C = (qT,α)
−2(1 − T

n
)(nIT×T −

Â)Γ̂−1(nIT×T − Â) and u = B̂⊤a + (nIT×T − Â)−1(Y − XB̂)⊤z0, this set is an
ellipsoidal region with center u. If

min
{T 2

n
,
log8 p

n

}
→ 0 (3.39)

additionally to Assumption (A1) as required in case (i) of Theorem 3.6, then P[(B∗)⊤a ∈
Êα] ≥ 1− α− o(1). If additionally

T 2/n+
√
T
(
sT + s log(p/s)

)
/n→ 0 (3.40)

as required in case (ii) for the lower bound, then P[(B∗)⊤a ∈ Êα] → 1 − α and the
above confidence ellipsoid provides the exact nominal coverage (i.e., it is provably non-
conservative). Note that the upper bound (i) is more important than the lower bound
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(ii) since the upper bound (i) guarantees that the type I error in the hypothesis test
(3.6) is at most α, i.e., P[(B∗)⊤a ∈ Êα] ≥ 1− α− o(1). It is thus fortuitous that only
the weak additional condition (3.39) is required for the upper bound (i) to guarantee
the desired type I error, while the more stringent condition (3.40) is only required to
prove non-conservativeness.

The additional assumption (3.39) is satisfied for a large class of growths of (T, n, p).
For instance it holds under polynomial growth p ≍ nγ or exponential growth of the
form p ≲ exp(n1/8−γ′

) for constants γ, γ′ > 0, as log8 p
n

→ 0 is then satisfied. Although
we believe that the mild condition (3.39) is an artefact of the proof, it is unclear at this
point how to relax (3.39) unless a different ellipsoid is considered. In Section 3.4.3, we
will construct a different ellipsoid that does not require the extra conditions (3.39) or
(3.40) but that has worse performance in simulations.

The radius of Êα i.e., the half-length of its largest axis is given by

ϕmin(C)−1/2 = (1− T/n)−1/2qT,α∥Γ̂1/2(nIT×T − Â)−1∥op. (3.41)

Since ∥IT×T − (IT×T − Â/n)−1∥op = oP(1) by Proposition 3.2 and Lemma 3.14 on the
one hand, and all eigenvalues of Γ̂ are of order σ2n(1 + oP(1)) by the arguments in
the proof of Lemma 3.26 on the other hand, the radius (3.41) is qT,ασn−1/2(1 + oP(1))

which is of order σ
√
T/n by (3.38).

The random vector (3.37) involves multiplication by (nIT×T −Â) which differs from
the pivotal quantity in the asymptotic normality result (3.21). However, Theorem 3.6
still holds with ξ in (3.37) replaced by

ξ̌ = (IT×T − Â/n)−1(Y −XB̂)⊤z0 + n(B̂ −B∗)⊤a. (3.42)

Indeed, with∣∣∥Γ̂−1/2
ξ̌∥2 − ∥Γ̂−1/2

ξ∥2
∣∣ ≤ ∥Γ̂−1/2

(ξ̌ − ξ)∥2 = ∥Γ̂−1/2(
(IT×T − Â/n)−1 − IT×T

)
ξ∥2.

Since the eigenvalues of Γ̂ are all of order σ2n(1 + oP(1)) , since ∥(IT×T − Â/n)−1 −
IT×T∥op ≤ (1 + oP(1))|Ŝ|/n by Proposition 3.2 and since ∥ξ∥2 = OP(

√
σ2nT ) by The-

orem 3.25, the previous display is OP(
√
Ts/n) and converges to 0 in probability by

Assumption (A1). Under Assumption (A1), Theorem 3.6 thus holds for ξ in (3.37) if
and only if it holds for ξ̌. Furthermore the corresponding ellipsoid,

Ěα =
{
θ ∈ RT : (1−T

n
)1/2∥Γ̂−1/2

[
(IT×T−Â/n)−1(Y −XB̂)⊤z0+n(B̂

⊤
a−θ)

]
∥2 ≤ qT,α

}
enjoys the same properties as Êα: Type I error guarantees P[(B∗)⊤a ∈ Ěα] ≥ 1−α−o(1)
under (3.39), and non-conservativeness P[(B∗)⊤a ∈ Ěα] → 1− α under (3.40).

3.4.2 Unknown Σ

A similar result is available if Σ is unknown. Consider the notation (3.30) from Sec-
tion 3.3.2.
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Theorem 3.8. Consider a canonical basis direction ej ∈ Rp for some j ∈ [p] and let
Assumption (A1) be fulfilled. Additionally assume that either (3.34) or (3.35) holds.
Then for any estimator γ̂(j) satisfying (3.32)-(3.33),

√
n− T

∥ẑj∥2

∥∥∥Γ̂−1/2
(
(Y −XB̂)⊤ẑj +

(nIT×T − Â)(B̂ −B∗)⊤ej

n(ẑ⊤
j Xej)−1

)∥∥∥
2

≤
√
χ2
T + oP(1) +OP(min{ T√

n
, log2 p

n1/4 }) (3.43)

where χ2
T is a random variable with chi-square distribution with T degrees-of-freedom.

Theorem 3.8 is proved in Section 3.13.2. The corresponding confidence ellipsoid for
the j-th row (B∗)⊤ej of B∗ is

Ê j
α =

{
θj ∈ RT :

√
n− T

∥ẑj∥2

∥∥∥Γ̂−1/2
[
(Y −XB̂)⊤ẑj+

(nIT×T − Â)(B̂
⊤
ej − θj)

n(ẑ⊤
j Xej)−1

]∥∥∥
2
≤ qT,α

}
.

If either one of the condition (3.34) or (3.35) holds on the growth of the sparsity of
Σ−1ej, this confidence ellipsoid does not require the knowledge of Σ and has the same
guarantees as those of the previous section.

3.4.3 Relaxing the additional assumptions (3.39) and (3.40)

Instead of normalizing using Γ̂−1/2 as in the previous sections, a simple estimate of σ2

lets us relax the conditions (3.39) and (3.40) that are required in the previous section
to ensure ∥Γ̂−1/2ξ∥2 = (χ2

T )
1/2 + oP(1).

Theorem 3.9. Let ξ, ξ̌ be defined in (3.37) and (3.42) respectively, and let σ̂2 =

∥Y −XB̂∥2F/(nT ). Then under Assumption (A1), there exists a random variable χ2
T

with chi-square distribution with T degrees of freedom such that

(σ̂2n)−1/2∥ξ∥2 = (χ2
T )

1/2 + oP(1), (σ̂2n)−1/2∥ξ̌∥2 = (χ2
T )

1/2 + oP(1). (3.44)

Theorem 3.10. Consider a canonical basis direction ej ∈ Rp for some j ∈ [p] and let
Assumption (A1) be fulfilled. Additionally assume that either (3.34) or (3.35) holds.
Then for any estimator γ̂(j) satisfying (3.32)-(3.33),

1

∥ẑj∥2σ̂
∥∥∥(Y −XB̂)⊤ẑj +

(nIT×T − Â)(B̂ −B∗)⊤ej

n(ẑ⊤
j Xej)−1

∥∥∥
2
=
√
χ2
T + oP(1) (3.45)

where χ2
T is a random variable with chi-square distribution with T degrees-of-freedom.

The above asymptotic chi-square results hold under the same assumptions as The-
orem 3.3 and Theorem 3.5. The reason for the success of these estimates is that σ̂ es-
timates σ at a rate faster than T−1/2: we have |σ̂/σ− 1| = oP(T

−1/2) by Theorem 3.25.
However, simulations in Section 3.6 reveal that the asymptotic (χ2

T )
1/2 estimates of
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the previous subsections involving the matrix Γ̂−1/2 are more robust to larger sparsity
levels, although Assumption (A1) is oblivious to this phenomenon.

The corresponding 1− α confidence ellipsoid for (B∗)⊤a based on (3.44) and ξ̌ is

Ěσ̂,α =
{
θ ∈ RT : 1

σ̂
√
n

∥∥(IT×T − Â
n

)−1
(Y −XB̂)⊤z0 + n(B̂

⊤
a− θ)

∥∥
2
≤ qT,α

}
(3.46)

and satisfies P[(B∗)⊤a ∈ Ěσ̂,α] → 1 − α under Assumption (A1). Similar confidence
ellipsoids based on (3.45) can be readily constructed.

3.4.4 Hypothesis testing

We now turn to type II error for the testing problem

H0 : (B
∗)⊤a = 0T×1 against H1 : ∥(B∗)⊤a∥2 ≥ ρn (3.47)

where ρn > 0 is a separation radius. The hypothesis test (3.47) at level 1 − α is
naturally achieved by rejecting H0 if and only if 0T×1 ̸∈ Ěσ̂,α for the ellipsoid in (3.46).
Similar rejection procedures can be obtained with Ěα or Ê j

α for the confidence ellipsoids
defined in Sections 3.4.1 and 3.4.2.

We can also determine the separation radius ρn required so that this testing pro-
cedure has nontrivial power (type II error). Focusing here on Ěσ̂,α in (3.46), rejection
happens if and only if the following quantity is positive

(σ̂2n)−1∥(IT×T − Â/n)−1(Y −XB̂)⊤z0 + nB̂
⊤
a∥22 − q2T,α

= W 2
n − q2T,α

+ (σ̂2n)−1∥n(B∗)⊤a∥22
+ 2(σ̂2n)−1/2na⊤(B∗)⊤ξ̌.

where W 2
n = (σ̂2n)−1∥ξ̌∥22 and Wn = (χ2

T )
1/2+oP(1) by (3.44). By Theorem 3.3 applied

to b = (B∗)⊤a∥(B∗)⊤a∥−1
2 , the last line is of the form 2σ̂−2∥(B∗)⊤a∥2N (0, σ2) so

that it is of order ∥(B∗)⊤a∥2OP(1). The second line is positive, of order σ−2n(1 +
oP(1))∥(B∗)⊤a∥22; this is the quantity that should dominate in order to ensure that
the above display is positive. Since the first line W 2

n − qT,α = (Wn − qT,α)(Wn +
qT,α) is positive with probability at least α − o(1) by Proposition 3.7, we obtain that
if ∥(B∗)⊤a∥2 ≥ ρn for ρn/(σn−1/2) → +∞, then the type II error is at most 1 −
α + o(1). Although this type II error is typically a constant close to 1 (e.g. if α =
0.05), this shows that the above test has at most constant type II error as long as
the separation radius satisfies ρn ≫ σn−1/2. We can also find conditions on ρn that
ensures that the type II error is smaller than any constant. The first line above is
of order (Wn − qT,α)OP(

√
T ) = OP(

√
T ) since Wn = OP(

√
T ) + oP(1) and qT,α =√

T +O(1) by Proposition 3.7 and (3.38). Thus ρn ≫ T 1/4σn−1/2 is sufficient in order
for (σ̂2n)−1∥n(B∗)⊤a∥22 to dominate both the first and third lines with probability
approaching one. In summary, ρn ≫ σn−1/2 is sufficient to achieve a constant type II
error, while ρn ≫ T 1/4σn−1/2 is sufficient to grant a vanishing type II error.
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In single task models, coefficients B∗
jt of order o(σn−1/2) cannot be detected, cf.

the discussion after (3.6). Here on the other hand in the multi-task setting with T →
+∞, detection of non-zero vector (B∗)⊤ej is possible with constant power even if the
individual coefficients in (B∗)⊤ej are unσ(Tn)−1/2 for any slowly increasing un with
un → +∞. If un = o(

√
T ), the coefficients (B∗

jt)t=1,...,T are individually impossible
to detect, while detection of the row vector (B∗)⊤ej is possible with constant type
I and type II errors. Similarly, if the individual coefficients (B∗

jt)t=1,...,T are of order
unσT

−1/4n−1/2 for any slowly increasing un with un → +∞, the above testing procedure
for the row vector (B)⊤ej has vanishing type II error.

3.5 Computing the interaction matrix efficiently
Equation (3.18) which defines Â is convenient for theoretical purposes, as the pseudoin-
verse suppresses invertibility issues and the form (3.18) naturally arises in the proofs,
see for instance Lemmas 3.18 to 3.20. However, (3.18) is not computationally tractable
as it involves computing a pseudoinverse of size pT × pT . The goal of this section is
to provide a computationally tractable representation for Â; in particular we will see
that one only needs to compute inverses of matrices of size |Ŝ| × |Ŝ|. A first step when
implementing is to remove all covariates j ∈ {1, ..., p} such that B̂⊤ej = 0, as dropping
those indices and the corresponding columns of X does not change the value of Â in
(3.18). For the purpose of this section and only in this section, we assume without
loss of generality that Ŝ = [p] and that all variables j ∈ [p] are such that B̂⊤ej ̸= 0.
However, we will keep the notation X Ŝ and use summation sign

∑
j∈Ŝ to emphasize

that the indices j /∈ Ŝ and corresponding columns of X have been dropped.
Before stating a formal proposition with a computationally friendly representation

of the matrix Â, we explain the crux of the argument, which relies on the Sherman-
Morrison-Woodbury inversion formula. Recall that X̃⊤X̃ = (IT×T ⊗X⊤

Ŝ
X Ŝ) and that

for every j ∈ Ŝ

H(j) := λ∥B̂⊤ej∥−1
2

(
IT×T − B̂⊤eje

⊤
j B̂ ∥B̂⊤ej∥−2

2

)
∈ RT×T , (3.17)

as well as H̃ =
∑

j∈Ŝ H
(j) ⊗ (eje

⊤
j ). By splitting the part of H(j) proportional to the

identity and the rank one part, we find

X̃⊤X̃ + nTH̃ = (IT×T ⊗X⊤
Ŝ
X Ŝ) + nTλ

∑
j∈Ŝ

IT×T ⊗ eje
⊤
j

∥B̂⊤ej∥2
−
[B̂⊤eje

⊤
j B̂

∥B̂⊤ej∥32
⊗ (eje

⊤
j )
]

=
(
IT×T ⊗

(
X⊤

Ŝ
X Ŝ + diag(v)

))
− nTλ

∑
j∈Ŝ

[(B̂⊤eje
⊤
j B̂)⊗ (eje

⊤
j )

∥B̂⊤ej∥32

]

where v ∈ R|Ŝ| is the vector with vj = nTλ∥B̂⊤ej∥−1
2 and diag(v) is the square

diagonal matrix with v as its diagonal. By the mixed product property (3.13) we have

(B̂⊤eje
⊤
j B̂)⊗ (eje

⊤
j ) = (B̂⊤ej ⊗ ej)(B̂

⊤ej ⊗ ej)
⊤

57



CHAPTER 3. HIGH-DIMENSIONAL MULTI-TASK REGRESSION

so that, with b(j) = (nTλ∥B̂⊤ej∥−3
2 )1/2 B̂⊤ej ∈ RT we obtain

X̃
⊤
X̃ + nTH̃ =

(
IT×T ⊗

(
X⊤

Ŝ
X Ŝ + diag(v)

))
−
∑
j∈Ŝ

(b(j) ⊗ ej)(b
(j) ⊗ ej)

⊤

=
(
IT×T ⊗

(
X⊤

Ŝ
X Ŝ + diag(v)

))
−UU⊤

= M −UU⊤,

where U ∈ R(|Ŝ|T )×|Ŝ| has columns (b(j)⊗ej)j∈Ŝ and M = IT×T ⊗
(
X⊤

Ŝ
X Ŝ+diag(v)

)
.

If M is invertible and its inverse can be computed efficiently, the inverse of the above
display is given by the Sherman-Morrison-Woodbury formula [123]: if the matrix
−I |Ŝ|×|Ŝ| +U⊤M−1U is invertible then M −UU⊤ is also invertible and

(M −UU⊤)−1 = M−1 −M−1U
(
−I |Ŝ|×|Ŝ| +U⊤M−1U

)−1

U⊤M−1.

Since v has positive entries, X⊤
Ŝ
X Ŝ + diag(v) is always invertible and so is M , with

M−1 = IT×T ⊗
(
X⊤

Ŝ
X Ŝ + diag(v)

)−1
. (3.48)

Hence we only need to perform two inversions of matrices of size |Ŝ|×|Ŝ|: the inversion
of X⊤

Ŝ
X Ŝ + diag(v) and of −I |Ŝ|×|Ŝ| +U⊤M−1U .

Proposition 3.11. With the above notation for v ∈ R|Ŝ| and b(j) ∈ RT for each j ∈ Ŝ,
if the matrix P defined entrywise by

P = (Pjk)(j,k)∈Ŝ×Ŝ, Pjk = −I{j = k}+ (b(j)⊤b(k)) (e⊤
j

(
X⊤

Ŝ
X Ŝ + diag(v)

)−1
ek)

is invertible then

Â = Tr
[
X⊤

Ŝ
X Ŝ(X

⊤
Ŝ
X Ŝ+diag(v))−1

]
IT×T −

[∑
j∈Ŝ

b(j)
∑
k∈Ŝ

(e⊤
j Qek)(e

⊤
j P

−1ek)b
(k)⊤
]

where Q =
(
X⊤

Ŝ
X Ŝ + diag(v)

)−1
X⊤

Ŝ
X Ŝ

(
X⊤

Ŝ
X Ŝ + diag(v)

)−1
.

Proof. By definition of Â and using the above Sherman-Morrison-Woodbury identity

Ât,t′ = Tr[(e⊤
t ⊗X Ŝ)(X̃

⊤
X̃ + nTH̃)†(et′ ⊗X⊤

Ŝ
)]

= Tr[(e⊤
t ⊗X Ŝ)M

−1(et′ ⊗X⊤
Ŝ
)]

− Tr
[
(e⊤

t ⊗X Ŝ)M
−1U

(
−I |Ŝ|×|Ŝ| +U⊤M−1U

)−1
U⊤M−1(et′ ⊗X⊤

Ŝ
)
]

= Tr[(e⊤
t et′)⊗ (X Ŝ(X

⊤
Ŝ
X Ŝ + diag(v))−1X⊤

Ŝ
)]

− Tr
[
U⊤M−1((et′e

⊤
t )⊗X⊤

Ŝ
X Ŝ)M

−1U
(
−I |Ŝ|×|Ŝ| +U⊤M−1U

)−1]
.

By (3.14), the first term equals I{t = t′}Tr[X Ŝ(X
⊤
Ŝ
X Ŝ +diag(v))−1X⊤

Ŝ
] which gives

the first term in the proposition, proportional to IT×T . Using again the structure of
M−1 in (3.48), the second summand in the previous display is equal to

−Tr
[
U⊤((et′e

⊤
t )⊗Q

)
UP−1

]
(3.49)
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where P and Q are given in the proposition, after noting that the definition of P is
equivalent to P = −I |Ŝ|×|Ŝ| + U⊤M−1U . Since U has columns b(j) ⊗ ej, the entry
(j, k) ∈ Ŝ × Ŝ of the matrix U⊤((et′e

⊤
t )⊗Q

)
U is equal to

(b(j)⊤et′e
⊤
t b

(k)) (e⊤
j Qek) = (e⊤

t′b
(j))(e⊤

t b
(k)) (e⊤

j Qek).

Since Tr[AB] =
∑

j,k AjkBjk for two symmetric matrices of the same size, we obtain

(3.49) = −
∑
j∈Ŝ

∑
k∈Ŝ

(e⊤
t′b

(j))(e⊤
t b

(k)) (e⊤
j Qek)(e

⊤
j P

−1ek)

= e⊤
t′

[
−
∑
j∈Ŝ

b(j)
∑
k∈Ŝ

(e⊤
j Qek)(e

⊤
j P

−1ek)b
(k)⊤
]
et.

On the last line, the matrix in bracket is the second matrix in the expression of Â.

We now turn to implementation details. We recommend an approach that makes
use of optimized vectorized code as often as possible to compute the quantities in
Proposition 3.11, and if available to use a library with Einstein summation routine as
this allows the code to mimick the mathematical notation in Proposition 3.11. For
concreteness, the following code lets us efficiently compute Â with the Python library
Numpy [115], and the Einstein summation function numpy.einsum which comes in
handy. Assume that B̂ has been computed, the rows in [p] \ Ŝ removed and the result
stored in an array B_S of size |Ŝ| × T , that X with the columns in [p] \ Ŝ removed is
stored in an array X_S of size n × |Ŝ|, and that the scalar nTλ is stored in variable
nTlambda. Then the vector v and matrix with columns (b(j))j∈Ŝ in variable b can be
computed as follows:

import numpy as np
norms = np.linalg.norm(B_S, axis=1) # shape (|Ŝ|, )
v = nTlambda * norms**(-1) # shape (|Ŝ|, )
b = nTlambda**0.5 * np.einsum("j,jt->jt", norms**(-3/2), B_S)# shape (|Ŝ|, T)

Finally, matrices (X⊤
Ŝ
X Ŝ +diag(v))−1 and Q are computed using built-in symmetric

matrix inversion, while computation of P and Â again resorts to using np.einsum:

gram = X_S.T @ X_S # shape (|Ŝ|,|Ŝ|)
inverse = np.linalg.invh(gram + np.diag(v)) # shape (|Ŝ|,|Ŝ|)
Q = inverse @ gram @ inverse # shape (|Ŝ|,|Ŝ|)
P = - np.eye(p) + np.einsum("jt,kt,jk -> jk", b, b, inverse) # shape (|Ŝ|,|Ŝ|)
A = np.eye(T) * np.einsum("jk,jk->", gram, inverse) \

- np.einsum("jt,ku,jk,jk->tu", b, b, Q, np.linalg.invh(P))# shape (T, T)

In einsum, we use indices t and u to loop over [T ], and indices j and k to loop over
Ŝ. All calls to einsum can be further optimized by pre-computing the optimal order
in which tensor contractions should be performed (see numpy.einsum_path).

Empirically, we have observed that this implementation using the Sherman-Morrison-
Woodbury identity and the above code is several orders of magnitude faster than a naive
one involving sparse matrices and the full inversion of X̃⊤X̃ + nTH̃ .
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3.6 Numerical experiments
We run simulations to illustrate the theorems proved in Sections 3.3 and 3.4. The
values of the parameters are fixed to n = 2000, p = 6000, T = 10, η1 = η2 = 0, σ2 = 1.
The tuning parameter is λ = maxj Σ

1/2
jj

1√
nT

(
1 +

√
2
T
log p

s

)
(we explain below how Σ

is constructed). The directions of interest are a = ej ∈ Rp and b = e1 ∈ RT .

3.6.1 Quantile-quantile plots of the pivotal quantities

The goal is to assess how the sparsity of B∗ and Σ−1e1 influence the convergence
in Theorems 3.3, 3.5, 3.6, 3.8 and 3.10. Denote by s and sΩ the respective sparsity
parameters that will vary in the experiments. Given a target tuple (s, sΩ) we generate
B∗ with exactly s non-zero rows and Σ with exactly sΩ non-zero entries on the first
column of Σ−1, so that sΩ = ∥Σ−1e1∥0.

We explain first how Σ is constructed so that it satisfies the constraints in As-
sumption (A1) as well as the sparsity requirement on Σ−1e1. Start by sampling M , a
(p− 1)× (p− 1) matrix with i.i.d. N (0, 1) entries. Then perform the QR decomposi-
tion of M to obtain an orthogonal matrix Q, the distribution of which is uniform in
the sense of Haar measure on the orthogonal group O(p − 1). Next, consider D, the
diagonal (p− 1)× (p− 1) matrix with entries {1 + j/(p− 2) : j ∈ {0, . . . , p− 2}} and
set Λ = QDQ⊤. Define the block matrix

Λ̃ =

[
3/2 v⊤

v Λ

]
where v ∈ Rp−1 is a vector with sparsity ∥Σ−1e1∥0 − 1 and norm ∥v∥2 = 1. This
ensures boundedness of the spectrum as the smallest eigenvalue of Λ̃ satisfies the lower
bound

λmin(Λ̃) ≥ λmin

([ 3/2 −∥v∥2
−∥v∥2 λmin(Λ)

])
=

5−
√
17

4
≳ 0.219,

where the last equality follows from λmin(Λ) = 1 and ∥v∥2 = 1. Similarly, the largest
eigenvalue of Λ̃ can be bounded above by λmax(Λ̃) = 7+

√
17

4
≲ 2.8. Finally set Σ =

α−1Λ̃−1 where α is the greatest diagonal entry of Λ̃−1 so that max{Σjj, j = 1, ..., p} =
1. This construction leads to λmin(Σ) ≈ 0.32, λmax(Σ) ≈ 1.76 and (Σ−1)jj ≈ 1.85.

The row-sparse matrix B∗ is constructed as follows. Initialize B∗ as a matrix filled
with λ’s and alter it in two different ways:

(i) Setting with overlapping supports. In the first setting, we zero out rows of B∗

while forcing an overlap of the supports of B∗ and Σ−1e1 (either supp(Σ−1e1) ⊂
supp(B∗) or the reverse inclusion). The intuition is that this makes inequality
(3.91) tight. This constraint is therefore expected to slow down convergence.

(ii) No-overlap setting. In the second setting this constraint is removed and the sup-
port of B∗ is picked uniformly at random as a subset of {1, ..., p} \ supp(Σ−1e1).
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Assume that the tuple (s, sΩ) is fixed. We sample Nsim = 128 instances of (X,E).
For each sample, we compute the estimator B̂ using the function MultiTaskElasticNet
from the Python library Scikit-learn [207], build the interaction matrix Â using the
implementation from Section 3.5 and collect the pivotal quantities appearing in the
Theorems. The Q-Q plots and histograms for different pairs (s, sΩ) are then reported
in Figures 3.1 and 3.2 for the overlapping supports setting (i) and Figures 3.3 and 3.4
for the no-overlap setting (ii).

Asymptotic normality is observed empirically on Figure 3.3 in the no-overlap set-
ting, both when Σ is known (blue) and unknown (green). The convergence holds
up well across a wide range of sparsity levels. In the overlapping supports setting of
Figure 3.1, convergence is maintained if Σ is known, but in the unknown Σ case it
deteriorates fast when ∥Σ−1e1∥0 grows. This suggests that condition (3.34) is not an
artefact of the proof.

The picture is different with chi-square results. In the no-overlap setting of Fig-
ure 3.4, convergence is observed across all sparsity levels for pivotal quantities in The-
orem 3.6 (known Σ) and Theorem 3.8 (unknown Σ) whereas an increase in s slows
down convergence in Theorem 3.10 (unknown Σ). In the overlapping supports setting
(i) of Figure 3.2, pivotal quantities in Theorems 3.6 and 3.10 exhibit the same behavior
as in the previous setting whereas the one from Theorem 3.8 shows increasingly slower
convergence as ∥Σ−1e1∥0 grows. Again, this suggests that condition (3.34) is not an
artefact of the proof.

3.6.2 The advantage of multi-task learning for narrower confi-
dence intervals

In Figure 3.5 we illustrate the discussion around (3.26) by comparing the lengths of 95%
confidence intervals obtained via multi-task Lasso and single-task Lasso. ∥Σ−1e1∥0 is
set to 5 and the pair (T, s) varies. For a given (T, s) and a sampled (X,E) we compute
the relative change (lengthmulti− lengthsingle)/lengthsingle. We collect these values over
Nsim = 128 samples and obtain the bottom figure. Since the results with or without the
overlap constraint in the supports are similar, only the no-overlap setting (ii) is shown.
In the upper figure, multi-task confidence interval lengths are pooled together over the
samples and we compare them to the aggregate single-task lengths. As a sanity check
we observe that multi-task and single-task Lasso coincide when T is equal to 1. For
s = 15, Â-based confidence intervals always have smaller length, which shrinks as T
increases. When T = 20 we observe a 40% average gain in the width. Exploiting several
tasks thus provides better estimates than intervals based on the first task. However,
as s grows, this effect fades gradually and when s = 100 it is counterbalanced by high
variance in the multi-task lengths.
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Figure 3.1: QQ-plots and histograms in the unfavorable setting (i) for pivotal quantities
in Theorem 3.3 (blue), Theorem 3.5 (green).
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Figure 3.2: QQ-plots and histograms in the unfavorable setting (i) for pivotal quantities
in Theorem 3.6 (blue), Theorem 3.8 (green), Theorem 3.10 (orange).
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Figure 3.3: QQ-plots and histograms in the favorable setting (ii) for pivotal quantities
in Theorem 3.3 (blue), Theorem 3.5 (green).
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Figure 3.4: QQ-plots and histograms in the favorable setting (ii) for pivotal quantities
in Theorem 3.6 (blue), Theorem 3.8 (green), Theorem 3.10 (orange).
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SUPPLEMENT

3.7 Intuition
Let us give some rationale behind the pivotal quantities stated in the main theorems.
In this paragraph and only in this paragraph for the sake of providing some intuition,
we assume that a = ej for some canonical basis vector in Rp and that Σ = Ip×p so
that entries of X are i.i.d. N (0, 1). In this setting, the random vector z0 = Xej

has i.i.d. N (0, 1) entries and is independent of X−j, the matrix X with j-th column
removed. Since z ∼ Nn(0, In×n), Stein’s formula [240, 241] states that E[z⊤

0 f(z0)] =
E[
∑n

i=1(∂/∂z0i)fi(z0)] for any differentiable vector field f = (f1, ..., fn) with f : Rn →
Rn, under integrability conditions. For the sake of the current informal argument,
assume that Stein’s formula provides reasonable approximation. Then applying Stein’s
formula to f = (Y − XB̂)et for each task t = 1, ..., T (here, et is the t-th canonical
basis vector in RT ), by nontrivial computations that are made rigorous in the proofs
given in the supplement, the approximations

z⊤
0 (Y −XB̂)e1 ≈ na⊤(B̂ −B∗)e1 −

∑T

t=1
Â1ta

⊤(B̂ −B∗)et,

z⊤
0 (Y −XB̂)e2 ≈ na⊤(B̂ −B∗)e2 −

∑T

t=1
Â2ta

⊤(B̂ −B∗)et,

...

z⊤
0 (Y −XB̂)eT ≈ na⊤(B̂ −B∗)eT −

∑T

t=1
ÂTta

⊤(B̂ −B∗)et

(3.50)

hold up to smaller order terms, where Â is the interaction matrix in Equation (3.18).
By viewing (3.50) as a linear system with T equations and the T unknowns (a⊤(B̂ −
B∗)et)t=1,...,T , and assuming that solving the linear system maintains the approxima-
tions, we obtain that

a⊤(B̂ −B∗)e1

a⊤(B̂ −B∗)e2
...

a⊤(B̂ −B∗)eT

 ≈
(
nIT×T − Â

)−1


z⊤
0 (Y −XB̂)e1

z⊤
0 (Y −XB̂)e2

...
z⊤
0 (Y −XB̂)eT


or equivalently (B̂−B∗)⊤a =

(
nIT×T −Â

)−1
(Y −XB̂)⊤z0. Thus the matrix product

of (nIT×T − Â)−1 times the residuals projected onto z0 provides us with estimates of
the bias of B̂ on the direction a ∈ Rp. This informal argument is the crux of the
rigorous methodology developed in the next subsections. In the sequel, we drop the
assumption that Σ = Ip×p. When Σ ̸= Ip×p is known as in Section 3.3.1, the score
vector z0 in (3.50) has to be replaced by a random vector proportional to XΣ−1a.
When Σ is unknown as in Section 3.3.2, the score vector has to be estimated.

3.8 Proof of Proposition 3.2
We restate the proposition for convenience.
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Proposition 3.2. Let Â be defined by (3.18). Then
(i) Â is symmetric and positive semi-definite.
(ii) If X Ŝ is rank |Ŝ| then the spectral norm of Â is bounded from above as ∥Â∥op ≤

|Ŝ|.
(iii) If X Ŝ is rank |Ŝ| and |Ŝ|/n < 1 then IT×T − Â/n is positive-definite and

∥IT×T − (IT×T − Â/n)−1∥op ≤ (|Ŝ|/n)/(1− |Ŝ|/n).
Proof. (i) We have the following equalities:

u⊤Âv
(i)
= Tr

[
(u⊤ ⊗X Ŝ)[X̃

TX̃ + nTH̃ ]†(v ⊗ (X Ŝ)
⊤)
]

(ii)
= Tr

[
(vu⊤ ⊗ (X Ŝ)

⊤X Ŝ)[X̃
TX̃ + nTH̃ ]†

]
(iii)
= Tr

[
[X̃TX̃ + nTH̃ ]†

⊤
(vu⊤ ⊗ (X Ŝ)

⊤X Ŝ)
⊤]

(iv)
= Tr

[
[X̃TX̃ + nTH̃ ]†(uv⊤ ⊗ (X Ŝ)

⊤X Ŝ)
]

(v)
= Tr

[
(uv⊤ ⊗ (X Ŝ)

⊤X Ŝ)[X̃
TX̃ + nTH̃ ]†

]
= v⊤Âu

where (i) follows from (3.19), (ii) is a consequence of Tr[M 1M 2] = Tr[M 2M 1] and
the mixed product property (3.13), (iii) and (v) follow from Tr[M ] = Tr[M⊤], (iv)
holds because the pseudoinverse preserves symmetry.

This proves that Â is symmetric. Since the pseudoinverse of a positive semi-definite
matrix is positive semi-definite as well, we also have

u⊤Âu = ∥([X̃TX̃ + nTH̃ ]†)1/2(u⊗X⊤
Ŝ
)∥2F ≥ 0 (3.51)

so that Â is positive semi-definite.
(ii) Recall that X̃ = IT×T ⊗X Ŝ. By properties of Gram matrices, rank(X̃⊤X̃) =

rank(X̃) = |Ŝ|T , hence by the rank-nullity theorem, ker(X̃⊤X̃) has dimension (p −
|Ŝ|)T . By definition of X Ŝ, each vector et ⊗ ej is in the kernel of X̃ for j /∈ Ŝ and
t ∈ [T ], hence in ker(X̃⊤X̃). These (p − |Ŝ|)T vectors are linearly independent, so
they form a basis of ker(X̃⊤X̃).
Besides, since H̃ =

∑
k∈Ŝ H

(k) ⊗ (eke
⊤
k ), the mixed product property of Kronecker

products (3.13) implies that H̃(et⊗ej) = 0 for j /∈ Ŝ and t ∈ [T ], hence ker(X̃⊤X̃) ⊂
ker(X̃⊤X̃ + nTH̃). Since these matrices are positive semi-definite, it is easy to check
that the reverse inclusion holds as well, so that ker(X̃⊤X̃) = ker(X̃⊤X̃ + nTH̃).

Since H̃ is positive semi-definite, X̃⊤X̃ ⪯ X̃⊤X̃ + nTH̃ holds in the sense of the
positive semi-definite order, and

(X̃⊤X̃ + nTH̃)† ⪯ (X̃⊤X̃)† (3.52)

holds because the two matrices have the same kernel, see [143]. Next, using (3.51),

u⊤Âu = ∥([X̃TX̃]†)1/2(u⊗ (X Ŝ)
⊤)∥2F + Tr[(u⊤ ⊗X Ŝ){[X̃TX̃ + nTH̃ ]† − [X̃⊤X̃]†}(u⊗ (X Ŝ)

⊤)]

≤ ∥([X̃TX̃]†)1/2(u⊗ (X Ŝ)
⊤)∥2F

= Tr[(u⊤ ⊗X Ŝ)(IT×T ⊗ (X⊤
Ŝ
X Ŝ)

†)(u⊗ (X Ŝ)
⊤)]

= (u⊤u) Tr[X Ŝ(X
⊤
Ŝ
X Ŝ)

†(X Ŝ)
⊤]

= ∥u∥2|Ŝ|,
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where the first inequality follows from (3.52) and the third and fourth line follow
respectively from X̃⊤X̃ = IT×T ⊗ X Ŝ and the mixed product property (3.13). The
last line stems from the fact that X Ŝ(X

⊤
Ŝ
X Ŝ)

†X⊤
Ŝ

is a projection matrix of rank |Ŝ|
when rank(X Ŝ) = |Ŝ|.

(iii) Since X Ŝ has rank |Ŝ|, we have by (ii) that ∥Â∥op ≤ |Ŝ| < n. Since Â is
positive-semi definite, its spectral norm is its largest eigenvalue, hence all the eigen-
values of Â/n are < 1, and IT×T − Â/n is positive definite. For any M ∈ RT×T with
∥M∥op < 1 we have (IT×T −M )−1 =

∑∞
k=0 M

k. By the triangle inequality and the
submultiplicativity of the operator norm,

∥(IT×T −M)−1 − IT×T∥op ≤ ∥M∥op
∞∑
k=1

∥M∥k−1
op = ∥M∥op/(1− ∥M∥op).

3.9 Preliminaries
In this section we develop a series of technical lemmas that will be used for proving
Sections 3.3 and 3.4. We consider model (3.2) and the estimator B̂ from (3.4). Let
η1 > 0, η2 ≥ 2, η3, η4 ∈ (0, 1) and set λ, λ0 as in (3.8). Define the sparsity level

s̄ = s
(
1/T +

4∥Σ∥op(1 + η4)
2

κ2
(2 + η2 + 1/

√
T )2
) 2

(λ/λ0 − 1)2
(3.53)

and note that s̄ is of the same order as s when the spectrum of Σ is bounded away from
0 and infinity as in Assumption (A1). Let C = {U ∈ Rp×T : ∥U∥2,1 ≤ 3

√
s∥U∥F},

κ = (1− η3)ϕmin(Σ)1/2 and define the events

Ω1 =
{

max
U∈C,U ̸=0

∣∣∣ ∥XU∥F
∥Σ1/2U∥F

√
n
− 1
∣∣∣<η3}, Ω2 =

{ p∑
j=1

(∥ETXej∥2 − nTλ0)
2
+<sn

2Tλ20

}
,

Ω3 =
{

max
B⊂[p]:|B|≤s+2s̄+1

(
max

v∈Rp:supp(v)⊂B

∣∣∣ ∥Xv∥2√
n∥Σ1/2v∥2

− 1
∣∣∣)<η4}, Ω4 =

{
∥E∥op<σ(2

√
n+

√
T )
}

as well as
Ω∗ = Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4. (3.54)

Since the only randomness is with respect to (X,E), we view the underlying probability
space as Ω = (Rn×p)× (Rn×T ) and Ω1,Ω2,Ω3,Ω4,Ω∗ as subsets of Ω so that Ωi occurs
if and only if (X,E) ∈ Ωi for each i = 1, 2, 3.

Lemma 3.12. Let Assumption (A1) be fulfilled. Then P(Ω∗) → 1.

Lemma 3.13. On Ω∗ we have:

(i) B̂ −B∗ ∈ C,
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(ii) n−1/2∥X(B̂ −B∗)∥F ≤ (1− η3)R̄,

(iii) ∥Σ1/2(B̂ −B∗)∥F ≤ R̄,

(iv) ∥B̂ −B∗∥2,1 ≤ 3
√
s∥B̂ −B∗∥F ≤ 3

√
sϕmin(Σ)−1/2R̄,

(v) ∥Y −XB̂∥2F ≤ 8σ2nT + 2(1− η3)
2nR̄2,

where

R̄ := (1− η3)
−1κ−12(1 + η1)(3 + η2)σmax

j
Σ

1/2
jj

√
sT/n

(
1 +

√
(2/T ) log(p/s)

)
.

Moreover, R̄ −−−→
n→∞

0 under Assumption (A1).

Lemma 3.14. On Ω∗, inequality |Ŝ| ≤ s̄ holds with s̄ in (3.53).

Lemma 3.15. On Ω∗ we have rank(X Ŝ) = |Ŝ|.

Lemma 3.16. For almost every (X,E), the KKT conditions of B̂ in (3.4) hold strictly
in the sense that P(maxj /∈Ŝ ∥(Y −XB̂)⊤Xej∥2 < nTλ) = 1.

Lemma 3.17. Given the noise matrix E and two design matrices X,X define B̂ in
(3.4) and B by

B = argminB∈Rp×T

(
1

2nT
∥E +X(B∗ −B)∥2F + λ∥B∥2,1

)
.

If X,X,E are such that both {(X,E), (X,E)} ⊂ Ω∗ then

n1/2∥Σ1/2(B̂ −B)∥F ≤ C1(η4)(R̄ + ∥E∥opn−1/2)∥(X −X)Σ−1/2∥F ,
∥X(B −B∗)−X(B̂ −B∗)∥F ≤ C2(η4)(R̄ + ∥E∥opn−1/2)∥(X −X)Σ−1/2∥F

for some constants that depend on η4 only and R̄ is defined in Lemma 3.13.

Lemma 3.18. For almost every (X,E) in the open set Ω1 ∩ Ω2 ∩ Ω3, B̂ is a Fréchet
differentiable function of X. For almost every (X,E) in Ω1 ∩ Ω2 ∩ Ω3, if

B̂(w) = argminB∈Rp×T

(
1

2nT
∥E + (X +wa⊤)(B∗ −B)∥2F + λ∥B∥2,1

)
is the estimate (3.4) with X replaced by the perturbed design X +wa⊤, then for any
b ∈ RT (

(X +wa⊤)(B̂(w)−B∗)
)
b−

(
X(B̂ −B∗)

)
b =

(
D(b)

)
w + o(∥w∥)
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as ∥w∥ → 0, where D : RT → Rn×n is a linear map given by D(b) = D∗(b) + D∗∗(b)
with

D∗(b) = (a⊤(B̂ −B∗)b)In×n − (b⊤ ⊗X Ŝ)
(
X̃⊤X̃ + nTH̃

)†(
((B̂ −B∗)⊤a)⊗X⊤

Ŝ

)
= (a⊤(B̂ −B∗)b)In×n − (b⊤ ⊗X Ŝ)

(
X̃

⊤
X̃ + nTH̃

)†a⊤(B̂ −B∗)e1X
⊤
Ŝ...

a⊤(B̂ −B∗)eTX
⊤
Ŝ

 ,

D∗∗(b) = (b⊤ ⊗X Ŝ)
(
X̃⊤X̃ + nTH̃

)†
((Y −XB̂)⊤ ⊗ aŜ)

= (b⊤ ⊗X Ŝ)
(
X̃

⊤
X̃ + nTH̃

)†aŜe
⊤
1 (Y −XB̂)⊤

...
aŜe

⊤
T (Y −XB̂)⊤


for all b ∈ RT and w ∈ Rn. Note that D,D∗ and D∗∗ implicitly depend on (X,E).
Hence the matrix D(b) of size n×n is the Jacobian of the map w 7→ (X+wa⊤)(B̂(w)−
B∗)b at w = 0.

Lemma 3.19. For any b ∈ RT we have on Ω∗

Tr[D∗(b)] = b⊤(nIT×T − Â)(B̂ −B∗)⊤a, (3.55)
T∑
t=1

(
Tr[D∗∗(et)]

)2
≤ C3(Σ)σ2sT (3.56)

for some constant depending on Σ and η1, ..., η4 only.

Lemma 3.20. Under Assumption (A1), as n, p→ +∞ we have

1

σ2n
E
[
I{Ω∗}

T∑
t=1

(
z⊤
0 X(B̂ −B∗)et − Tr[D(et)]

)2]
−→ 0.

Since Ω∗ has probability approaching one, this implies that 1
σ2n

∑T
t=1(z

⊤
0 X(B̂−B∗)et−

Tr[D(et)])
2 converges to 0 in probability.

We now prove each lemma. The lemmas are restated before their proofs for conve-
nience.

Lemma 3.12. Let Assumption (A1) be fulfilled. Then P(Ω∗) → 1.

Proof of Lemma 3.12. The fact that Ω∗ = Ω1∩Ω2∩Ω3∩Ω4 has probability approach-
ing one under Assumption (A1) follows from the propositions in Section 3.10: Propo-
sition 3.21 (iii) with k = 9s and x = log n, Proposition 3.22, Proposition 3.23 applied
with k = s+ 2s̄+ 1, and P(Ω4) ≥ 1− e−n/2 by [71, Theorem II.13].

Lemma 3.13. On Ω∗ we have:
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(i) B̂ −B∗ ∈ C,

(ii) n−1/2∥X(B̂ −B∗)∥F ≤ (1− η3)R̄,

(iii) ∥Σ1/2(B̂ −B∗)∥F ≤ R̄,

(iv) ∥B̂ −B∗∥2,1 ≤ 3
√
s∥B̂ −B∗∥F ≤ 3

√
sϕmin(Σ)−1/2R̄,

(v) ∥Y −XB̂∥2F ≤ 8σ2nT + 2(1− η3)
2nR̄2,

where

R̄ := (1− η3)
−1κ−12(1 + η1)(3 + η2)σmax

j
Σ

1/2
jj

√
sT/n

(
1 +

√
(2/T ) log(p/s)

)
.

Moreover, R̄ −−−→
n→∞

0 under Assumption (A1).

Proof of Lemma 3.13. In the whole proof we place ourselves on the event Ω∗. We prove
first that B̂ −B∗ ∈ C.
By the definition of B̂, 1

nT
∥XB̂ − Y ∥2F + 2λ∥B̂∥2,1 ≤ 1

nT
∥XB∗ − Y ∥2F + 2λ∥B∗∥2,1.

Rewriting the LHS as 1
nT

∥X(B̂−B∗)+ (XB∗−Y )∥2F +2λ∥B̂∥2,1 and expanding the
square yields ∥X(B̂ −B∗)∥2F ≤ 2⟨X(B̂ −B∗),E⟩F + 2nTλ(∥B∗∥2,1 − ∥B̂∥2,1).
The following chain of inequalities holds

⟨X(B̂ −B∗),E⟩F
(i)

≤
p∑

j=1

∥(B̂ −B∗)⊤ej∥2 · ∥(XTE)⊤ej∥2

(ii)

≤
p∑

j=1

∥(B̂ −B∗)⊤ej∥2
[
(∥ETXej∥2 − nTλ0)+ + nTλ0

]
(iii)

≤ ∥B̂ −B∗∥F
( p∑

j=1

(∥ETXej∥2 − nTλ0)
2
+

)1/2
+ nTλ0∥B̂ −B∗∥2,1

(iv)

≤ ∥B̂ −B∗∥F
√
sn

√
Tλ0 + nTλ0∥B̂ −B∗∥2,1.

(i) and (iii) follow from Cauchy-Schwarz inequality, (ii) stems from the inequality
a ≤ (a− b)+ + b and (iv) holds on Ω2. Thus

∥X(B̂−B∗)∥2F ≤ 2∥B̂−B∗∥F
√
snTλ0+2nT

[
λ0∥B̂−B∗∥2,1+λ(∥B∗∥2,1−∥B̂∥2,1)

]
.

(3.57)
Besides, the quantity inside the bracket on the right hand side satisfies

λ0∥B̂ −B∗∥2,1 + λ(∥B∗∥2,1 − ∥B̂∥2,1)
(i)
= λ0

∑
j∈S

∥(B̂ −B∗)⊤ej∥2 + λ0
∑
j /∈S

∥B̂⊤
ej∥2 + λ

(∑
j∈S

∥B∗⊤ej∥2 − ∥B̂⊤
ej∥2

)
− λ

∑
j /∈S

∥B̂⊤
ej∥2

(ii)

≤ λ0
√
s∥B̂ −B∗∥F + λ0

∑
j /∈S

∥B̂⊤
ej∥2 + λ

∑
j∈S

∥(B∗ − B̂)⊤ej∥2 − λ
∑
j /∈S

∥B̂⊤
ej∥2

(iii)

≤ (λ0 + λ)
√
s∥B̂ −B∗∥F + (λ0 − λ)

∑
j /∈S

∥B̂⊤
ej∥2,
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where (ii) follows from Cauchy-Schwarz and the reverse triangle inequality applied
respectively on the first and third summands of (i), whereas (iii) is a consequence
of Cauchy-Schwarz. Combining this bound with (3.57) and plugging in the value
λ = (1 + η2)λ0 yields

∥X(B̂−B∗)∥2F ≤ 2nT
√
sλ0

(
2+η2+

1√
T

)
∥B̂−B∗∥F −2nTη2λ0

∑
j /∈S

∥B̂⊤
ej∥2. (3.58)

Non-negativity of the LHS, the equality
∑

j /∈S ∥B̂
⊤
ej∥2 = ∥B̂ −B∗∥2,1 −

∑
j∈S ∥(B̂ −

B∗)⊤ej∥2 and Cauchy-Schwarz lead to ∥B̂ −B∗∥2,1 ≤ (1 + 3
η2

+ 1
η2

√
T
)
√
s∥B̂ −B∗∥F .

Since T ≥ 1 and η2 ≥ 2, we get ∥B̂ −B∗∥2,1 ≤ 3
√
s∥B̂ −B∗∥F , that is B̂ −B∗ ∈ C.

The inequality

∥B̂ −B∗∥F ≤ ∥Σ−1/2∥op∥Σ1/2(B̂ −B∗)∥F = ϕmin(Σ)−1/2∥Σ1/2(B̂ −B∗)∥F (3.59)

combined with (3.58) and the event Ω1 yields

∥X(B̂ −B∗)∥F ≤ 2κ−1
(
2 + η2 + T−1/2

)√
nTλ0

√
s

≤ 2κ−1(1 + η1)(3 + η2)σmax
j

Σ
1/2
jj

√
sT
(
1 +

√
(2/T ) log(p/s)

)
=

√
n(1− η3)R̄.

Reusing Ω1, we obtain ∥Σ1/2(B̂ −B∗)∥F ≤ (
√
n(1− η3))

−1∥X(B̂ −B∗)∥F ≤ R̄.
Combining this last bound with (3.59) yields ∥B̂ −B∗∥F ≤ ϕmin(Σ)−1/2R̄, hence (iv).
For inequality (v), using Ω4, (a+ b)2 ≤ 2a2 + 2b2 and ∥E∥2F ≤ rank(E)∥E∥2op we have

∥Y −XB̂∥2F ≤ 2∥E∥2F + 2∥X(B̂ −B∗)∥2F
≤ 2 rank(E)∥E∥2op + 2n(1− η3)

2R̄2

≤ 2min(n, T )(2σmax(
√
n,

√
T ))2 + 2n(1− η3)

2R̄2

≤ 8σ2nT + 2(1− η3)
2nR̄2.

Regarding the limit of R̄, note that R̄ ∝
(
sT
n

)1/2
+
(
s
n
log(p

s
)
)1/2. By Assump-

tion (A1), each summand goes to 0 as n goes to ∞.

Lemma 3.14. On Ω∗, inequality |Ŝ| ≤ s̄ holds with s̄ in (3.53).

Proof of Lemma 3.14. The KKT conditions of (3.4) are given by

(Y −XB̂)⊤Xej = nTλ∥B̂⊤
ej∥−1

2 B̂
⊤
ej for all j ∈ Ŝ,

∥(Y −XB̂)⊤Xej∥2 ≤ nTλ for all j /∈ Ŝ.
(3.60)

This implies that ∀j ∈ Ŝ, ∥(Y − XB̂)⊤Xej∥2 = nTλ. Since ∥(Y − XB̂)⊤Xej∥2 ≤
∥E⊤Xej∥2+ ∥(X(B∗− B̂))⊤Xej∥2 by the triangle inequality, we have for any j ∈ Ŝ,

nTλ ≤ (∥E⊤Xej∥2 − nTλ0)+ + nTλ0 + ∥(X(B∗ − B̂))⊤Xej∥2, (3.61)

nT (λ− λ0) ≤ (∥E⊤Xej∥2 − nTλ0)+ + ∥(X(B∗ − B̂))⊤Xej∥2. (3.62)
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Summing the squares of the above inequalities for a subset B ⊂ Ŝ and using (a+ b)2 ≤
2a2 + 2b2, we get

|B|n2(λ− λ0)
2T 2

2
≤
∑
j∈B

(∥E⊤Xej∥2−nTλ0)2++Tr({X(B∗−B̂)}⊤
{∑

j∈B
Xeje

⊤
j X

⊤
}
{X(B∗−B̂)}).

The first term is bounded from above by sn2Tλ20 on the event Ω2. Dividing by n2T 2

we find
|B|(λ− λ0)

2

2
≤ sλ20/T +

1

nT 2
∥X(B̂ −B∗)∥2Fψmax(B)

where ψmax(B) is the largest eigenvalue of 1
n

∑
j∈B Xeje

⊤
j X

⊤, or equivalently the
largest eigenvalue of 1

n
(XBX

⊤
B), which is also the largest eigenvalue of 1

n
(X⊤

BXB).
On the event of Ω∗, we obtain

|B|(λ− λ0)
2

2
≤ sλ20/T +

ψmax(B)

nT 2

4

κ2
(2 + η2 + 1/

√
T )2nT 2λ20s,

or equivalently

|B|(λ/λ0 − 1)2

2
≤ s
(
1/T +

4ψmax(B)

κ2
(2 + η2 + 1/

√
T )2
)
.

Let s̄ be as in (3.53) and assume that |Ŝ| ≤ s̄ is violated on Ω∗. Then on Ω3, any
B ⊂ Ŝ with size |B| = ⌊s̄⌋+1 satisfies ∀v ∈ Rp, ∥XBvB∥2 ≤ (1+η4)

√
n∥Σ1/2∥op∥vB∥2.

Squaring yields ψmax(B) ≤ ∥Σ∥op(1 + η4)
2. Then

|B|(λ/λ0 − 1)2

2
≤ s
(
1/T +

4∥Σ∥op(1 + η4)
2

κ2
(2 + η2 + 1/

√
T )2
)

which shows that |B| ≤ s̄ by definition of s̄, a contradiction.

Lemma 3.15. On Ω∗ we have rank(X Ŝ) = |Ŝ|.

Proof. By Lemma 3.14, we have |Ŝ| ≤ s̄ on Ω∗. Since s ≤ s + 2s̄ + 1, the event Ω3

yields ∀v ∈ Rp, supp(v) ⊂ Ŝ =⇒ (1 − η4)
√
n∥Σ1/2v∥2 ≤ ∥X Ŝv∥2. If v is such

that supp(v) ⊂ Ŝ and X Ŝv = 0, then we must have v = 0. Equivalently, the linear
span of (ej)j∈Ŝ has intersection {0} with ker(X Ŝ), hence ker(X Ŝ) must be contained
in the span of (ej)j /∈Ŝ. Thus dimker(X Ŝ) ≤ p − |Ŝ| and by the rank-nullity theorem,
rank(X Ŝ) ≥ |Ŝ|. By definition of X Ŝ, it is also clear that rank(X Ŝ) ≤ |Ŝ|, hence the
conclusion.

Lemma 3.16. For almost every (X,E), the KKT conditions of B̂ in (3.4) hold strictly
in the sense that P(maxj /∈Ŝ ∥(Y −XB̂)⊤Xej∥2 < nTλ) = 1.

Proof of Lemma 3.16. This follows from the argument in Lemma 6.4 of [26, arXiv
version v1, 24 Feb 2019].
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Lemma 3.17. Given the noise matrix E and two design matrices X,X define B̂ in
(3.4) and B by

B = argminB∈Rp×T

(
1

2nT
∥E +X(B∗ −B)∥2F + λ∥B∥2,1

)
.

If X,X,E are such that both {(X,E), (X,E)} ⊂ Ω∗ then

n1/2∥Σ1/2(B̂ −B)∥F ≤ C4(η4)(R̄ + ∥E∥opn−1/2)∥(X −X)Σ−1/2∥F ,
∥X(B −B∗)−X(B̂ −B∗)∥F ≤ C5(η4)(R̄ + ∥E∥opn−1/2)∥(X −X)Σ−1/2∥F

for some constants that depend on η4 only and R̄ is defined in Lemma 3.13.

Proof of Lemma 3.17. By Lemma 3.14, B̂ − B has at most 2s̄ non-zero rows. Ω3

applied on each column of Σ1/2(B̂ −B) gives (1− η4)
2n∥Σ1/2(B̂ −B)∥2F ≤ ∥X(B̂ −

B)∥2F . Similarly, using Ω3 with X and summing the resulting inequality with the
previous one yields

2(1− η4)
2n∥Σ1/2(B̂ −B)∥2F ≤ ∥X(B̂ −B)∥2F + ∥X(B̂ −B)∥2F .

Define φ : B 7→ 1
2nT

∥E + X(B∗ − B)∥2F + λ∥B∥2,1, ψ : B 7→ 1
2nT

∥X(B̂ − B)∥2F
and γ : B 7→ φ(B) − ψ(B). When expanding the squares, it is clear that γ is the
sum of a linear function and of the convex penalty, thus γ is convex. Additivity of
subdifferentials yields ∂φ(B̂) = ∂γ(B̂)+∂ψ(B̂) = ∂γ(B̂). By optimality of B̂ we have
0p×T ∈ ∂φ(B̂), thus 0p×T ∈ ∂γ(B̂). This implies γ(B̂) ≤ γ(B). Letting H = B−B∗

and H = B̂ −B∗, the last inequality rewrites as

∥X(B̂ −B)∥2F ≤ ∥E −XH∥2F − ∥E −XH∥2F + g(B)− g(B̂).

Summing the similar inequality obtained by replacing X with X yields

∥X(B̂−B)∥2F+∥X(B̂−B)∥2F ≤ ∥E−XH∥2F−∥E−XH∥2F+∥E−XH∥2F−∥E−XH∥2F .

Combining the above displays, we obtain

2(1− η4)
2n∥Σ1/2(B̂ −B)∥2F

≤ ∥X(B̂ −B)∥2F + ∥X(B̂ −B)∥2F
≤ ∥E −XH∥2F − ∥E −XH∥2F + ∥E −XH∥2F − ∥E −XH∥2F
= ⟨X(H −H), 2E −X(H +H)⟩F + ⟨X(H −H), 2E −X(H +H)⟩F thanks to ⟨a−b,a+b⟩F=∥a∥2F−∥b∥2F

= ⟨(X −X)(H −H), 2E⟩F + ⟨H −H , (X⊤X −X⊤X)(H +H)⟩F
= ⟨H −H , 2(X −X)⊤E⟩F + ⟨H −H ,

[
X⊤(X −X) + (X −X)⊤X

]
(H +H)⟩F .

The second summand rewrites as ⟨X(H −H), (X−X)(H +H)⟩F + ⟨(X−X)(H −
H),X(H + H)⟩F . By Cauchy-Schwarz and the submultiplicativity of the Frobenius
norm, the second summand is bounded above by

∥X(H−H)∥F∥(X−X)Σ−1/2∥F∥Σ1/2(H+H)∥F+∥(X−X)Σ−1/2∥F∥Σ1/2(H−H)∥F∥X(H+H)∥F .
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Since H −H = B̂−B and H +H = B̂+B− 2B∗ have respectively at most 2s̄ and
2s̄+s non-zero rows, using Ω3 twice gives the following bound on the second summand:

2(1 + η4)
√
n∥Σ1/2(B̂ −B)∥F∥(X −X)Σ−1/2∥F∥Σ1/2(B̂ +B − 2B∗)∥F .

Combining the above displays, we find

2(1− η4)
2n∥Σ1/2(B̂ −B)∥2F

≤ 2∥Σ1/2(B̂ −B)∥F∥(X −X)Σ−1/2∥F
(
∥E∥op + (1 + η4)

√
n∥Σ1/2(B̂ +B − 2B∗)∥F

)
.

Thanks to Lemma 3.13 we have ∥Σ1/2(B̂−B∗)∥F ≤ R̄ and ∥Σ1/2(B−B∗)∥F ≤ R̄,
this shows that ∥Σ1/2(B̂−B)∥F ≤ ∥(X −X)Σ−1/2∥F

(
∥E∥opn−1 + 2(1 + η4)n

−1/2R̄
)
(1− η4)

−2,
hence

n1/2∥Σ1/2(B̂ −B)∥F ≤ 2(1 + η4)(1− η4)
−2(R̄ + ∥E∥opn−1/2)∥(X −X)Σ−1/2∥F .

We also have by the triangle inequality

∥X(B −B∗)−X(B̂ −B∗)∥F
≤ ∥X(B − B̂)∥F + ∥(X −X)(B̂ −B∗)∥F
≤ (1 + η4)n

1/2∥Σ1/2(B − B̂)∥F + ∥(X −X)Σ−1/2∥F∥Σ1/2(B̂ −B∗)∥F
≤ ∥(X −X)Σ−1/2∥F

[
2(1 + η4)(1− η4)

−2(R̄ + ∥E∥opn−1/2) + R̄
]

≤ 4(1 + η4)(1− η4)
−2
(
R̄ + ∥E∥opn−1/2

)
∥(X −X)Σ−1/2∥F ,

where the last line follows from the inequality 2(1+η4)(1−η4)−2 ≥ 2 for η4 ∈ (0, 1).

Lemma 3.18. For almost every (X,E) in the open set Ω1 ∩ Ω2 ∩ Ω3, B̂ is a Fréchet
differentiable function of X. For almost every (X,E) in Ω1 ∩ Ω2 ∩ Ω3, if

B̂(w) = argminB∈Rp×T

(
1

2nT
∥E + (X +wa⊤)(B∗ −B)∥2F + λ∥B∥2,1

)
is the estimate (3.4) with X replaced by the perturbed design X +wa⊤, then for any
b ∈ RT (

(X +wa⊤)(B̂(w)−B∗)
)
b−

(
X(B̂ −B∗)

)
b =

(
D(b)

)
w + o(∥w∥)

as ∥w∥ → 0, where D : RT → Rn×n is a linear map given by D(b) = D∗(b) + D∗∗(b)
with

D∗(b) = (a⊤(B̂ −B∗)b)In×n − (b⊤ ⊗X Ŝ)
(
X̃⊤X̃ + nTH̃

)†(
((B̂ −B∗)⊤a)⊗X⊤

Ŝ

)
= (a⊤(B̂ −B∗)b)In×n − (b⊤ ⊗X Ŝ)

(
X̃

⊤
X̃ + nTH̃

)†a⊤(B̂ −B∗)e1X
⊤
Ŝ...

a⊤(B̂ −B∗)eTX
⊤
Ŝ

 ,

D∗∗(b) = (b⊤ ⊗X Ŝ)
(
X̃⊤X̃ + nTH̃

)†
((Y −XB̂)⊤ ⊗ aŜ)

= (b⊤ ⊗X Ŝ)
(
X̃

⊤
X̃ + nTH̃

)†aŜe
⊤
1 (Y −XB̂)⊤

...
aŜe

⊤
T (Y −XB̂)⊤


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for all b ∈ RT and w ∈ Rn. Note that D,D∗ and D∗∗ implicitly depend on (X,E).
Hence the matrix D(b) of size n×n is the Jacobian of the map w 7→ (X+wa⊤)(B̂(w)−
B∗)b at w = 0.

Proof of Lemma 3.18. By Lemma 3.17 and Rademacher’s theorem, we know that the
Fréchet derivative of B̂ with respect to X exists almost everywhere, so that D(b)
exists for almost every (X,E) ∈ Ω∗. By Lemma 3.16, we also have that for almost
every (X,E), the KKT conditions are strict in the sense given in Lemma 3.16. In
the following, we consider (X,E) ∈ Ω∗ such that D(b) exists and such that the KKT
conditions are strict; almost every (X,E) ∈ Ω∗ satisfy these two conditions.

Since we know that the Jacobian D(b) exists by Rademacher’s theorem, it is enough
to characterize its value, for instance by computing the directional derivative in any
fixed direction w ∈ Rn. To this end, for a real u in a neighborhood of 0, let X(u) = X+

uwa⊤ and B(u) = B̂(uw) . Define the active set Ŝ(u) = {j ∈ [p] : ∥B(u)⊤ej∥2 > 0}.
We also write Ẋ = (d/du)X

∣∣
u=0

= wa⊤, and Ḃ = (d/du)B(u)
∣∣
u=0

. At 0, we have
X(0) = X and B(0) = B̂ is the estimator computed at (X,Y ) with Y = XB∗ +E.

As in (3.60), the KKT conditions for B(u) read, for j ∈ Ŝ(u) (i.e., e⊤
j B(u) ̸= 0),

e⊤
j X(u)⊤

[
E −X(u)(B(u)−B∗)

]
=

nTλ

∥B(u)⊤ej∥2
e⊤
j B(u) ∈ R1×T

and for j /∈ Ŝ(u) (i.e., e⊤
j B(u) = 0),

∥e⊤
j X(u)⊤

[
E −X(u)(B(u)−B∗)

]
∥2 < nTλ.

By Lipschitz continuity of u 7→ B(u) established in Lemma 3.17, the set Ŝ(u) is
constant in a neighborhood of 0 because the KKT conditions on Ŝ(u)c are bounded
away from nTλ on a neighborhood of 0 by continuity, and because the nonzero rows
of B(u) are bounded away from 0 in a neighborhood of 0 again by continuity of B(u).
Differentiation of the above display for j ∈ Ŝ(u) at u = 0 and the product rule yield

e⊤
j

[
Ẋ

⊤
(E −X(B̂ −B∗))−X⊤(Ẋ(B̂ −B∗) +XḂ)

]
= nTe⊤

j ḂH (j)

with H(j) in (3.17). Rearranging and using Ẋ = wa⊤,

e⊤
j

[
aw⊤(E−X(B̂−B∗))−X⊤(wa⊤(B̂−B∗))

]
= e⊤

j

[
nT ḂH(j)+X⊤XḂ

]
∈ R1×T .

Let P Ŝ =
∑

j∈Ŝ eje
⊤
j ∈ Rp×p. Multiplying by ej to the left and summing over j ∈ Ŝ,

we obtain

P Ŝ

[
aw⊤(E−X(B̂−B∗))−X⊤(wa⊤(B̂−B∗))

]
= P Ŝ

[
nT ḂH(j)+X⊤XḂ

]
∈ Rp×T .

Since Ŝ(u) is locally constant for u in a neighborhood of 0, we have P ŜḂ = Ḃ thus
XḂ = X ŜḂ, hence

aŜw
⊤(E−X(B̂−B∗))−X⊤

Ŝ
(wa⊤(B̂−B∗)) = nT

[∑
j∈Ŝ

eje
⊤
j ḂH(j)

]
+X⊤

Ŝ
X ŜḂIT×T ∈ Rp×T .
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We now use the relationship between vectorization and Kronecker product (3.16). Ap-
plying (3.14) to the previous display for each term, we find

((Y −XB̂)⊤ ⊗ aŜ)vec(w
⊤)−

((
(B̂ −B∗)⊤a

)
⊗X⊤

Ŝ

)
vec(w)

=
([
nT
∑
j∈Ŝ

(H(j) ⊗ eje
⊤
j )
]
+ IT×T ⊗X⊤

Ŝ
X Ŝ

)
vec(Ḃ)

=
(
X̃⊤X̃ + nTH̃

)
vec(Ḃ).

Since vec(·) is always a column vector, vec(w⊤) = vec(w) = w. Finally, we have
again using (3.16) and the chain rule, for any fixed b ∈ RT ,

D(b)w = d
du
X(u)(B(u)−B∗)b

∣∣
u=0

= wa⊤(B(0)−B∗)b+XḂb

= wa⊤(B(0)−B∗)b+X ŜḂb.

By Lemma 3.15, rank(X Ŝ) = |Ŝ|. The argument developed in the proof of Proposi-
tion 3.2 (ii) shows that the nullspace of the matrix X̃⊤X̃ + nTH̃ is exactly the linear
span of {et ⊗ ej, (j, t) ∈ Ŝc × [T ]}. Because P ŜḂ = Ḃ, vec(Ḃ) is in ker(X̃⊤X̃ +
nTH̃)⊥ = range(X̃⊤X̃ + nTH̃). Since for any symmetric matrix M , M †M is
the orthogonal projection on the range of M , we have

(
nTH̃ + X̃⊤X̃

)†(
nTH̃ +

X̃⊤X̃
)
vec(Ḃ) = vec(Ḃ). Since X ŜḂb is a column vector, using (3.16) again,

X ŜḂb = vec(X ŜḂb)

= (b⊤ ⊗X Ŝ)vec(Ḃ)

= (b⊤ ⊗X Ŝ)
(
X̃⊤X̃ + nTH̃

)†[
((Y −XB̂)⊤ ⊗ aŜ)−

((
(B̂ −B∗)⊤a

)
⊗X⊤

Ŝ

)]
w.

Since this holds for all w, this provides the desired expression for D(b) for all b.

Lemma 3.19. For any b ∈ RT we have on Ω∗

Tr[D∗(b)] = b⊤(nIT×T − Â)(B̂ −B∗)⊤a, (3.55)
T∑
t=1

(
Tr[D∗∗(et)]

)2
≤ C6(Σ)σ2sT (3.56)

for some constant depending on Σ and η1, ..., η4 only.

Proof of Lemma 3.19. For the first equality,

Tr[D∗(b)] = Tr[(a⊤(B̂−B∗)b)In×n−(b⊤⊗X Ŝ)
(
X̃⊤X̃+nTH̃

)†(
((B̂−B∗)⊤a)⊗X⊤

Ŝ

)
]

and the conclusion follows from (3.19).
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For (3.56), the following bounds will be useful. Inequality ∥X Ŝ∥2op ≤ ∥Σ∥op(1+η4)2n
holds on Ω∗. Furthermore since kerN = kerN † for all symmetric matrices N and since
H̃ is positive semi-definite, on Ω∗ we find

∥(X̃⊤
X̃ + nTH̃)†∥2op =

[
min

u∈Rnp:u∈ker(X̃⊤
X̃+nTH̃)⊥

u⊤(X̃
⊤
X̃ + nTH̃)u

]−2

≤
[

min
u∈Rnp:u∈ker(X̃⊤

X̃+nTH̃)⊥
u⊤(X̃

⊤
X̃)u

]−2

≤ ϕmin(Σ)−2(1− η4)
−4n−2. (3.63)

We now work on
∑T

t=1 Tr[D
∗∗(et)]

2 = ∥v∥2, the left hand side of (3.56). For brevity,
define M = (X̃

⊤
X̃ + nTH̃)†(IT×T ⊗ aŜ)(Y −XB̂)⊤. Then if et ∈ RT and ei ∈ Rn

denote canonical basis vectors,
∑T

t=1Tr[D
∗∗(et)]

2 = ∥v∥2 where v ∈ RT has components
vt = Tr[D∗∗(et)] so that

vt =
n∑

i=1

e⊤
i [D

∗∗(et)]ei =
n∑

i=1

e⊤
i (e

⊤
t ⊗X Ŝ)Mei = e⊤

t

n∑
i=1

(IT×T ⊗ (e⊤
i X Ŝ))Mei,

where the last equality stems from two applications of the mixed product property
(3.13):

e⊤
i (e

⊤
t ⊗X Ŝ) = (1⊗ e⊤

i )(e
⊤
t ⊗X Ŝ) = (e⊤

t )⊗ (e⊤
i X Ŝ) = (e⊤

t IT×T )⊗ (1(e⊤
i X Ŝ))

= e⊤
t (IT×T ⊗ (e⊤

i X Ŝ)).

Thus v =
∑n

i=1(IT×T ⊗ (e⊤
i X Ŝ))Mei and since ∥v∥22 = v⊤v = (v⊤ ⊗ 1)v, it follows

that ∥v∥2 =∑n
i=1(v

⊤ ⊗ (e⊤
i X Ŝ))Mei = Tr[(v⊤ ⊗X Ŝ)M ] by (3.13).

By the definition of M , using the commutation property of the trace we have

∥v∥22 = Tr
[
(Y −XB̂)⊤(v⊤ ⊗X Ŝ)(X̃

⊤
X̃ + nTH̃)†(IT×T ⊗ aŜ)

]
.

By the Cauchy-Schwarz inequality for ⟨·, ·⟩F and using ∥UV ∥F ≤ ∥U∥op∥V ∥F twice,
we find

∥v∥22 ≤ ∥(Y −XB̂)⊤(v⊤ ⊗X Ŝ)∥F∥(X̃
⊤
X̃ + nTH̃)†(IT×T ⊗ aŜ)∥F

≤ ∥Y −XB̂∥op∥v⊤ ⊗X Ŝ∥F∥(X̃
⊤
X̃ + nTH̃)†∥op∥(IT×T ⊗ aŜ)∥F

and the second factor equals ∥v⊤ ⊗X Ŝ∥F = ∥v∥2∥X Ŝ∥F by (3.15) for the Frobenius
norm.

We introduce the notation ≲ to denote an inequality up to a constant that depends
on η1, ..., η4 and ϕmin(Σ), ϕmax(Σ) only. On Ω∗ we have the operator norm bound
(3.63), the bound ∥X Ŝ∥F ≤ |Ŝ|1/2∥X Ŝ∥op ≲ (|Ŝ|n)1/2 as well as ∥(IT×T ⊗ aŜ)∥F =√
T∥aŜ∥2 ≲

√
T so that

∥v∥2 ≲ ∥Y −XB̂∥op
√
nsn−1

√
T

and ∥Y −XB̂∥op ≤ ∥E∥op + ∥X(B∗ − B̂)∥F ≤ σ(
√
T + 2

√
n) +

√
nR̄ thanks to Ω4

and Lemma 3.13. Since T ≤ n and R̄ ≲ 1 under Assumption (A1), we have proved
that ∥v∥2 ≲ σ

√
sT holds on Ω∗ which is exactly the desired bound (3.56).
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Lemma 3.20. Under Assumption (A1), as n, p→ +∞ we have

1

σ2n
E
[
I{Ω∗}

T∑
t=1

(
z⊤
0 X(B̂ −B∗)et − Tr[D(et)]

)2]
−→ 0.

Since Ω∗ has probability approaching one, this implies that 1
σ2n

∑T
t=1(z

⊤
0 X(B̂−B∗)et−

Tr[D(et)])
2 converges to 0 in probability.

Proof of Lemma 3.20. Recall that we assume the normalization ∥Σ−1/2a∥2 = 1. Fol-
lowing the notation in [26] we define the quantities:

u0 = Σ−1a, z0 = Xu0, Q0 = Ip×p − u0a
⊤.

We have the decomposition X = XQ0 + z0a
⊤, the vector z0 is independent of XQ0

and z0 has distribution Nn(0, In×n). Given a value of (E,XQ0), define the open set

U0 = {z0 ∈ Rn : (E,XQ0 + z0a
⊤) ∈ Ω∗} ⊂ Rn.

Since Ω∗ is open , so is the set U0. Given a value of (E,XQ0) we also define the
function U0 → Rp×T given by

B̂(z0) = argminB∈Rp×T

(
1

2nT
∥E + (XQ0 + z0a

⊤)(B∗ −B)∥2F + λ∥B∥2,1
)

as well as

F : U0 → Rn×T , F : z0 7→ (XQ0 + z0a
⊤)(B̂(z0)−B∗).

Since R̄ → 0 under Assumption (A1) and ∥E∥opn−1/2 is bounded by an absolute
constant on Ω4 when T ≤ n, Lemma 3.17 shows that F is L-Lipschitz for some constant
L of the form L = σC7(η1, ..., η4,Σ) where the constant depends only on η1, ..., η4 and
the minimal and maximal eigenvalues of Σ. By Kirszbraun’s Theorem, there exists
an L-Lipschitz function F̃ : Rn → Rn×T which is an extension of F , i.e., it satisfies
F (z0) = F̃ (z0) for all z0 ∈ U0. Since F (z0) is bounded from above by n1/2(1− η3)R̄
in U0 by Lemma 3.13, we define the function F̄ : Rn → Rn×T by

F̄ (z0) = Π ◦ F̃ (z0)

where Π : Rn×T → Rn×T is the convex projection onto the Frobenius ball of radius
n1/2R̄ in Rn×T . Since convex projections are 1-Lipschitz functions, the function F̄ is
also an L-Lipschitz extension of F .

If D̄(b) denotes the Jacobian such that F̄ (w)b− F̄ (0)b = D̄(b)w + o(∥w∥) for all
b ∈ RT , then D̄(b) = D(b) on U0 because two functions that coincide on an open set
have the same gradient on this open set. This implies

E
[
I{Ω∗}

T∑
t=1

(
z⊤
0 F (z0)et − Tr[D(et)]

)2]
= E

[
I{Ω∗}

T∑
t=1

(
z⊤
0 F̄ (z0)et − Tr[D̄(et)]

)2]
≤ E

[ T∑
t=1

(
z⊤
0 F̄ (z0)et − Tr[D̄(et)]

)2]
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where the second display simply follows from I{Ω∗} ≤ 1. By the main result of [25]
we find

E
[
(z⊤

0 F̄ (z0)et − Tr[D̄(et)])
2
]
= E

[
∥F̄ (z0)et∥22 + Tr({D̄(et)}2)

]
≤ E

[
∥F̄ (z0)et∥22 + ∥D̄(et)∥2F

]
for each t = 1, ..., T since z0 ∼ Nn(0, In×n). Summing this inequality over t = 1, ..., T
yields

1

nσ2
E
[ T∑

t=1

(
z⊤
0 F̄ (z0)et − Tr[D̄(et)]

)2]
≤ 1

nσ2
E
[
∥F̄ (z0)∥2F +

T∑
t=1

∥D̄(et)∥2F
]

≤ R̄2

σ2
+

1

nσ2
E
[ T∑

t=1

∥D̄(et)∥2F
]

=
R̄2

σ2
+

1

nσ2
E
[
I{Ω∗}

T∑
t=1

∥D̄(et)∥2F
]
+

1

nσ2
E
[
I{Ωc

∗}
T∑
t=1

∥D̄(et)∥2F
]
.

Note that the first term, R̄2/σ2, converges to 0, as stated in Lemma 3.13. We now bound
the third term, on Ωc

∗. The quantity
∑T

t=1 ∥D̄(et)∥2F is exactly the squared Frobenius
norm of the Jacobian of the map F̄ : Rn → Rn×T (this Jacobian has dimensions
(nT )× n but we do not need to write it explicitly or choose a specific vectorization of
Rn×T into RnT ). Since F̄ is L-Lipschitz, the operator norm of the Jacobian is at most
L. Since the rank of the Jacobian of a map from Rn to any other linear space is at
most n, the rank of the Jacobian is at most n. If follows from ∥J∥2F ≤ rank(J)∥J∥2op
with J ∈ R(nT )×n the Jacobian of F̄ that

T∑
t=1

∥D̄(et)∥2F = ∥J∥2F ≤ nL2

so that 1
nσ2E[I{Ωc

∗}
∑T

t=1 ∥D̄(et)∥2F ] ≤ P(Ωc
∗)L

2/σ2 which converges to 0 under Assump-
tion (A1) thanks to P(Ω∗) → 1 in Lemma 3.12.

It remains to show that 1
nσ2E[I{Ω∗}

∑T
t=1 ∥D̄(et)∥2F ] converges to 0. This quantity

is equal to 1
nσ2E[I{Ω∗}

∑T
t=1 ∥D(et)∥2F ] since the derivatives of F̄ and F coincide on

U0. To bound this quantity, we use the explicit formulae obtained in Lemma 3.18 with
∥D(et)∥2F ≤ 2∥D∗(et)∥2F +2∥D∗∗(et)∥2F . We can use the following property of Kronecker
products. If M ,Q are two matrices, and et is the t-th canonical basis vector in RT ,
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then by the mixed product property (3.13)

T∑
t=1

∥(e⊤
t ⊗M )Q∥2F =

T∑
t=1

Tr[Q⊤(et ⊗M⊤)(e⊤
t ⊗M )Q]

= Tr[Q⊤
T∑
t=1

[
(et ⊗M⊤)(e⊤

t ⊗M )
]
Q]

= Tr[Q⊤(IT×T ⊗M⊤M)
]
Q]

= ∥(IT×T ⊗M )Q∥2F . (3.64)

Since ∥D∗(et)∥2F ≤ 2(a⊤(B̂−B∗)et)
2∥In×n∥2F +2∥(e⊤

t ⊗X Ŝ)
(
X̃⊤X̃ +nTH̃

)†(
((B̂−

B∗)⊤a)⊗X⊤
Ŝ

)
∥2F , thanks to (3.64) with M = X Ŝ and Q =

(
X̃⊤X̃ + nTH̃

)†(
((B̂ −

B∗)⊤a)⊗X⊤
Ŝ

)
for the second term we find

T∑
t=1

∥D∗(et)∥2F ≤ 2n∥(B̂−B∗)⊤a∥22+2∥(IT×T⊗X Ŝ)
(
X̃⊤X̃+nTH̃

)†(
((B̂−B∗)⊤a)⊗X⊤

Ŝ

)
∥2F .

The first summand is bounded by 2n∥(B̂ − B∗)∥2F ∥a∥22 ≤ 2nϕmin(Σ)−1/2R̄ ϕmax(Σ)
and the second summand by

(i)
≤ 2∥(IT×T ⊗X Ŝ)∥2op ∥

(
X̃⊤X̃ + nTH̃

)†∥2op ∥((B̂ −B∗)⊤a)⊗X⊤
Ŝ
∥2F

(ii)
≤ 2∥X Ŝ∥2op ∥

(
X̃⊤X̃ + nTH̃

)†∥2op ∥(B̂ −B∗)⊤a∥2F ∥X⊤
Ŝ
∥2F

≤ 2∥X Ŝ∥2op ∥
(
X̃⊤X̃ + nTH̃

)†∥2op ∥(B̂ −B∗)∥2F ∥a∥22 rank(X Ŝ)∥X Ŝ∥2op
(iii)
≤ 2(ϕmax(Σ)(1 + η4)

2n)2(ϕmin(Σ)−2(1− η4)
−4n−2)(ϕmin(Σ)−1/2R̄ ϕmax(Σ))s̄

= 2ϕmax(Σ)3ϕmin(Σ)−5/2s̄R̄.

Above, (i) follows from ∥MNU∥F ≤ ∥M∥op∥N∥op∥U∥F , (ii) is a consequence of
(3.15) and (iii) holds on Ω∗. Thus

∑T
t=1 ∥D∗(et)∥2F ≲ nR̄.

Likewise,

T∑
t=1

∥D∗∗(et)∥2F ≤ ∥(IT×T ⊗X Ŝ)
(
X̃⊤X̃ + nTH̃

)†
((Y −XB̂)⊤ ⊗ aŜ)∥2F

≤ (ϕmax(Σ)(1 + η4)
2n)(ϕmin(Σ)−2(1− η4)

−4n−2)(8σ2nT + 2(1− η3)
2nR̄2)ϕmax(Σ)

≲ σ2T

Thus 1
nσ2E[I{Ω∗}

∑T
t=1 ∥D̄(et)∥2F ] ≲ R̄

σ2 + T
n

and the right hand side converges to 0
under Assumption (A1).
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3.10 Proof that P(Ω∗) → 1

3.10.1 Ω1: Restricted Eigenvalues for random matrices in multi-
task learning

Proposition 3.21. Let G ∈ Rn×p be a random matrix with i.i.d. N (0, 1) entries and
let A be a subset of Rp×T with ∥B∥F = 1 for all B ∈ A.

(i) For any two A,B ∈ A, P(| ∥GA∥F − ∥GB∥F | ≥ C8

√
x∥B −A∥F ) ≤ 6e−x for

all x > 0.

(ii) supA,B∈A | ∥GA∥F−∥GB∥F | ≤ C9E supB∈A |Tr[B⊤G′]|+C10

√
x with probability

at least 1− e−x, where G′ ∈ Rp×T has i.i.d. N (0, 1) entries.

supA∈A | ∥GA∥F − √
n| ≤ C11E supB∈A |Tr[B⊤G′]| + C12

√
x also holds with

probability at least 1− 3e−x.

(iii) If X has i.i.d. Np(0,Σ) rows with maxj∈[p] Σjj ≤ 1 and

C = {A ∈ Rp×T : ∥A∥2,1 ≤
√
k∥A∥F}, (3.65)

then with probability at least 1− 3e−x,

sup
A∈C:∥Σ1/2A∥F=1

∣∣∣n−1/2∥XA∥F − 1
∣∣∣ = sup

B∈Rp×T :Σ−1/2B∈C,∥B∥F=1

∣∣∣n−1/2∥XΣ−1/2B∥F − 1
∣∣∣

≤ C13

√
x/n+ C14n

−1/2E sup
B∈Rp×T :Σ−1/2B∈C,∥B∥F=1

|Tr[B⊤G′]|

≤ C15

√
x/n+ C16

√
[kT + k log(p/k)]/(ϕmin(Σ)n)

This implies that for any constant η3 ∈ (0, 1), if {kT+k log(p/k)}/(nϕmin(Σ)) →
0 then P(maxA∈C:∥Σ1/2A∥F=1

∣∣n−1/2∥XA∥F − 1| ≤ η3) → 1.

The proof follows the argument from [172], adapted to the multi-task setting.

Proof of (i). We distinguish two cases.
Case (a):

√
xn > n/4. In this case we use that

∥GA∥F − ∥GB∥F ≤ ∥G(A−B)∥F =
( n∑

i=1

∥(A−B)⊤G⊤ei∥22
)1/2

and we apply [263, Theorem 6.3.2] to the vector vec(G⊤) ∈ Rnp×1 and the block
diagonal matrix with n blocks, each block being (A−B)⊤. This yields

P(| ∥GA∥F − ∥GB∥F | ≥
√
x∥B −A∥op +

√
n∥B −A∥F ) ≤ 2e−C17x.

Here,
√
n ≤ 4

√
x and we can bound from above the first term to obtain the desired

bound.

83



CHAPTER 3. HIGH-DIMENSIONAL MULTI-TASK REGRESSION

Case (b):
√
xn ≤ n/4. Write ∥GA∥F − ∥GB∥F =

∥GA∥2F−∥GB∥2F
∥GA∥F+∥GB∥F . We will use

repeatedly the following concentration bounds: if z ∼ Nq(0, Iq×q) and M ∈ Rq×q is
symmetric positive semi-definite, then

P
(
z⊤Mz − TrM < 2

√
x∥M∥F

)
≤ e−x. (3.66)

This is a straightforward consequence of [163, Lemma 1] after diagonalizing the sym-
metric positive semi-definite matrix M . Furthermore, for any M ∈ Rq×q,

P
(
z⊤Mz − TrM > 2

√
x∥M∥F + 2x∥M∥op

)
≤ e−x (3.67)

see for instance [41, Example 2.12] or [22, Lemma 3.1].
If g⊤

1 , ..., g
⊤
n are the rows of G then ∥GA∥2F =

∑n
i=1 g

⊤
i AA⊤gi is of the above form

with q = np and M is block diagonal with n blocks equal to AA⊤ ∈ Rp×p. Thus
∥GA∥2F ≥ n∥A∥2F − 2

√
xn∥AA⊤∥F ≥ n− 2

√
xn with probability at least 1− e−x by

(3.66) and thanks to ∥A∥F = 1. The same holds for a lower bound on ∥GB∥2F . For
the numerator, thanks to (3.67), with probability at least 1− e−x:

∥GA∥2F − ∥GB∥2F =
n∑

i=1

g⊤
i (A−B)(A+B)⊤gi

≤ 2
√
xn∥(A−B)(A+B)⊤∥F + 2x∥(A−B)(A+B)⊤∥op.

By the union bound, with probability at least 1− 3e−x,

∥GA∥F − ∥GB∥F ≤ 2
√
xn∥(A−B)(A+B)⊤∥F + 2x∥(A−B)(A+B)⊤∥op

2(n− 2
√
xn)

1/2
+

.

Since here
√
xn ≤ n/4, the denominator is at least 2(n/2)1/2 and using the submulti-

plicativity of the Frobenius norm with ∥A+B∥F ≤ 2 for the numerator we find

∥GA∥F − ∥GB∥F
∥A−B∥F

≤ 2

√
xn+ x

(n/2)1/2
≤ C18

√
x.

Proof of (ii). Since (i) proves that the process ZA = ∥GA∥F has subgaussian incre-
ment with respect to the Frobenius norm, (ii) follows by Talagrand Majorizing Measure
theorem, for example as stated in [172, Theorem 4.1].

The second statement follows by taking a fixed B ∈ A and using |√n−∥GB∥F | ≤
C19

√
x with probability at least 1− 2e−x by [263, Theorem 6.3.2] applied to the block

diagonal matrix with n blocks, each block being B⊤.

Proof of (iii). Recall that G′ ∈ Rp×T has i.i.d. N (0, 1) entries. By application of (ii),
it is sufficient to control the Gaussian width

E sup
B∈Rp×T :Σ−1/2B∈C,∥B∥F=1

|Tr[B⊤G′]| = E sup
A∈C:∥Σ1/2A∥F=1

|Tr[A⊤Σ1/2G′]|. (3.68)
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Let A ∈ C and let g⊤
1 , ..., g

⊤
p be the rows of Σ1/2G′. For any fixed j ∈ [p], the random

vector gj ∈ RT×1 has NT (01×T ,ΣjjIT×T ) distribution. By the triangle inequality and
the Cauchy-Schwarz inequality we have for some m, t > 0

|Tr[A⊤Σ1/2G′]| ≤
p∑

j=1

∥A⊤ej∥2∥gj∥2 = ∥A∥2,1(m+ t) +

p∑
j=1

∥A⊤ej∥2(∥gj∥2 −m− t)

≤ ∥A∥F
√
k(m+ t) + ∥A∥F

( p∑
j=1

(∥gj∥2 −m− t)2+

)1/2
where for the second line we used that A ∈ C. We have ∥A∥F ≤ ∥Σ−1/2∥op if
∥Σ1/2A∥F = 1. Next, we now define m such that m2 is the median of the χ2

T distribu-
tion, and t =

√
2 log(p/k). As explained in the proof of Proposition 3.22 around (3.70)

we have m ≤
√
T [190] as well as E

∑p
j=1(∥gj∥2−m− t)2+ ≤ k. By the inequality

√
a+√

b ≤
√

2(a+ b), (3.68) is bounded from above by ∥Σ−1/2∥op(
√

2k(T + 2 log(p/k)) +√
k) ≤ ∥Σ−1/2∥op

√
8k(T + log(p/k)) and the proof is complete.

3.10.2 Ω2: Control of the noise

Proposition 3.22. Let a+ = max(0, a). If E ∈ Rn×T has i.i.d. N (0, σ2) entries and
X ∈ Rn×p has i.i.d. Np(0,Σ) rows independent of E, then

p∑
j=1

( ∥E⊤Xej∥2
σ(1 + η1)

√
nΣjj

−
√
T −

√
2 log(p/s)

)2
+
≤

p∑
j=1

(∥E⊤Xej∥2
σ∥Xej∥2

−
√
T −

√
2 log(p/s)

)2
+

≤ s (3.69)

with probability at least 1− 4/{(2 log(p/s) + 2)(4π log(p/s) + 4)1/2}− pe−nη21/2. Conse-
quently, on the same event with

λ0 =
(

max
j=1,...,p

Σ
1/2
jj

)σ(1 + η1)√
nT

(
1 +

√
(2/T ) log(p/s)

)
we have

∑p
j=1(∥E⊤Xej∥2 − nTλ0)

2
+ ≤ σ2(1 + η1)

2nmaxj Σjjs ≤ sn2Tλ20.

Proof. Since Xej has i.i.d. N (0,Σjj) entries, P(∥Xej∥2 ≥ Σ
1/2
jj (

√
n+t)) ≤ e−t2/2 holds

by standard bounds on χ2
n random variables, e.g., as a consequence of [41, Theorem 5.5].

The choice t = η1
√
n and the union bound over {1, ..., p} provides the first inequality

in (3.69).
Since E is independent of X, conditionally on X the random variable gj :=

E⊤Xej/(σ∥Xej∥2) has standard normal distribution NT (0, IT×T ). Since the con-
ditional distribution does not depend on X, the unconditional distribution of gj is also
NT (0, IT×T ). By [41, Theorem 10.17] applied to the 1-Lipschitz function gj 7→ ∥gj∥2,
inequality P(∥gj∥2 ≥ mj + t) ≤ P(Zj ≥ t) holds, where Zj ∼ N (0, 1) and mj is the

85



CHAPTER 3. HIGH-DIMENSIONAL MULTI-TASK REGRESSION

median of the random variable ∥gj∥2. It follows that for any t > 0

W :=

p∑
j=1

(∥gj∥2−mj−t)2+ satisfies E[W ] ≤ E
p∑

j=1

(Zj−t)2+ ≤ 4pe−t2/2

(t2 + 2)(2πt2 + 4)1/2
,

(3.70)
where the second inequality follows from [25, Lemma G.1]. By the argument in [190],
the median of the χ2

T distribution is smaller than T so that mj ≤
√
T . Furthermore,

for t = (2 log(p/s))1/2 we have E[W ] ≤ sq where q−1 = (t2 + 2)(2πt2 + 4)1/2/4 > 1.
The second inequality in (3.69) thus holds with probability at least 1− q by Markov’s
inequality P(W > E[W ]q−1) ≤ q.

3.10.3 Ω3: Restricted Isometry Properties

The following bound is well known in the literature on the RIP property for Gaus-
sian matrices, as a consequence of Gordon’s Lemma, see, e.g., [279]. We provide the
argument here for completeness.

Proposition 3.23 (Bound on upper sparse eigenvalues of random matrices, Gordon’s
lemma). Let p ≥ n. If X ∈ Rn×p has i.i.d. N (0,Σ) rows, then

(i) for any set B ⊂ [p] we have

P
(

max
v∈Rp:supp(v)⊂B

∣∣∣ ∥Xv∥√
n∥Σ1/2v∥

− 1
∣∣∣ ≤√|B|/n+ t

)
≥ 1− 2e−nt2/2

by Gordon’s escape through the mesh theorem and its consequence, cf. for instance in
[71, Theorem II.13] applied to the Gaussian matrix XΣ−1/2 and the intersection of the
unit ball with the |B| dimensional linear span of {Σ1/2ej, j ∈ B}.

(ii) Let η4 ∈ (0, 1) be a constant. If k is such that
√
k/n ≤ η4/2 and k log(ep/k)/n ≤

η24/16, then simultaneously for all B with |B| ≤ k

P
(

max
B⊂[p]:|B|≤k

(
max

v∈Rp:supp(v)⊂B

∣∣∣ ∥Xv∥√
n∥Σ1/2v∥

− 1
∣∣∣) > η4

)
≤ 2 exp(−nη24/16).

Proof. For (ii), by the union bound with t = η4/2 we have

P
(

max
B⊂[p]:|B|≤k

(
max

v∈Rp:supp(v)⊂B

∣∣∣ ∥Xv∥√
n∥Σ1/2v∥

− 1
∣∣∣) > η4

)
≤ 2

(
p

k

)
e−nη24/8.

Since log
(
p
k

)
≤ k log(ep/k), the right hand side is bounded from above by 2 exp(−nη24/16)

by assumption on k.

3.11 Proof of Theorems 3.3 and 3.4
Proof. By replacing b by b/∥b∥2 if necessary, we assume that ∥b∥2 = 1 without loss of
generality. The proof is based on the decomposition

(nσ2)−1/2
(
naT (B̂ −B∗)b+ zT

0 (Y −XB̂)(IT×T − Â/n)−1b
)

= (nσ2)−1/2zT
0Eb+ r⊤b+ r̃⊤b
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with the remainder terms r⊤b and r̃⊤b defined by the random vectors r, r̃ ∈ RT

r⊤ = (nσ2)−1/2zT
0E

[
(IT×T − Â/n)−1 − (IT×T )

]
,

r̃⊤ = (nσ2)−1/2
[
aT (B̂ −B∗)(nIT×T − Â)− zT

0X(B̂ −B∗)
]
(IT×T − Â/n)−1.

Since z0 ∼ Nn(0, In×n) is independent of Eb ∼ Nn(0, σ
2In×n) we have z⊤

0 Eb/∥z0∥2 ∼
N (0, σ2). Since ∥z0∥22n−1 P−→1 by the law of large numbers, we obtain that (nσ2)−1/2z⊤

0 Eb
d−→N (0, 1)

by Slutsky’s theorem. To conclude with another application of Slutsky’s theorem, it
remains to prove that ∥r∥2 and ∥r̃∥2 both converge to 0 in probability, and to prove
that for the denominator, (nσ2)−1/2∥(Y −XB̂)(IT×T − Â/n)−1b∥2 P−→1.

For r, on Ω∗ we have ∥(IT×T−Â/n)−1−(IT×T )∥op ≤ s̄/(n−s̄) by Proposition 3.2(iii)
and Lemma 3.14. It follows that

E[min(1, ∥r∥2)] ≤ P(Ωc
∗) + E

[
I{Ω∗}(nσ2)−1/2∥E⊤z0∥2∥(IT×T − Â/n)−1 − (IT×T )∥op

]
≤ P(Ωc

∗) + (nσ2)−1/2
(
s̄/(n− s̄)

)
E
[
∥E⊤z0∥2

]
≤ P(Ωc

∗) + (nσ2)−1/2
(
s̄/(n− s̄)

)√
nTσ2

= P(Ωc
∗) +

(
s̄/(n− s̄)

)√
T

by Jensen’s inequality and E[∥E⊤z0∥22] = nTσ2. The last line converges to 0 by
Lemma 3.12 and Assumption (A1). Since Wn

P−→0 if and only if E[min(1, |Wn|)] → 0,
this proves the convergence ∥r∥2 P−→0.

For r̃, we use that

E[min(1, ∥r̃∥2)] ≤ P(Ωc
∗) + E[I{Ω∗}∥r̃∥2]

with P(Ωc
∗) → 0 as above. For the second term, on Ω∗ we have ∥(IT×T − Â/n)−1∥op ≤

∥IT×T∥op+∥IT×T−(IT×T−Â/n)−1∥op ≤ 1+s̄/(n−s̄) = (1−s̄/n)−1 by Proposition 3.2
and Lemma 3.14. It follows that

I{Ω∗}∥r̃∥2 ≤ I{Ω∗} 1
σ
√
n
(1− s̄

n
)−1∥(nIT×T − Â)(B̂ −B∗)⊤a− (B̂ −B∗)⊤X⊤z0∥2

= I{Ω∗} 1
σ
√
n
(1− s̄

n
)−1
[ T∑

t=1

(
Tr[D∗(et)]− z⊤

0 X(B̂ −B∗)et

)2]1/2
.

where the equality is a consequence of Lemma 3.19. Since D∗ = D − D∗∗, and using
the inequalities (a+ b)2 ≤ 2a2 + 2b2 and

√
a+ b ≤ √

a+
√
b,

E
[
I{Ω∗}

T∑
t=1

(
z⊤
0 (B̂ −B∗)Xet − Tr[D∗(et)]

)2]1/2
≤
[
2E
(
I{Ω∗}

T∑
t=1

[
z⊤
0 (B̂ −B∗)Xet − Tr[D(et)]

]2)
+ 2E

(
I{Ω∗}

T∑
t=1

Tr[D∗∗(et)]
2
)]1/2

≤ o((nσ2)1/2) +O
(
σmin(T, (sT )1/2)

)
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by Lemma 3.20 and inequality (3.56) in Lemma 3.19. Combining the above displays
yields

E[min(1, ∥r̃∥2)] ≤ P(Ωc
∗) + (nσ2)−1/2(1− s̄

n
)−1
[
o((nσ2)1/2) +O

(
σ(sT )1/2

)]
= o(1),

or equivalently ∥r̃∥2 P−→0.
Let us prove Theorem 3.4, that is (nσ2)−1/2∥(Y −XB̂)(IT×T − Â/n)−1b∥2 P−→1. By

the law of large numbers, we have ∥Eb∥22/(nσ2)
P−→1, so it suffices to show that

(nσ2)−1/2∥E
[
(IT×T − Â/n)−1 − IT×T

]
b−X(B∗ − B̂)(IT×T − Â/n)−1b∥2 P−→0.

Techniques similar to those above show that (nσ2)−1/2∥E
[
(IT×T−Â/n)−1−IT×T

]
b∥2 P−→0

by Proposition 3.2(iii), and that (nσ2)−1/2∥X(B∗ − B̂)(IT×T − Â/n)−1b∥2 P−→0 by
Lemma 3.13 and R̄ → 0.

An application of Slutsky’s lemma completes the proof of Theorem 3.3.

3.12 Proof for χ2
T limits, and confidence ellipsoid with

nominal coverage
Lemma 3.24 (Differentiation with respect to E). Here, we consider differentiation
with respect to E for fixed X. We have

E
[
I{Ω∗}∥E⊤X(B̂ −B∗)− σ2Â∥2F

]
≤ σ2nTR̄2 + σ4nT.

Proof. Let F : Rn×T → Rn×T be the function F : E 7→ X(B̂−B∗). The function F is
1-Lipschitz by [24, Proposition 3.1]. Furthermore, ∥F ∥F ≤ √

nR̄ on Ω∗ by Lemma 3.13,
so that if Π : Rn×T → Rn×T is the convex projection onto the Frobenius ball of
radius

√
nR̄, the composition F̄ = Π ◦ F coincides with F on Ω∗. The function F̄

is also 1-Lipschitz by composition of two 1-Lipschitz functions, and since Ω∗ is open,
the derivatives of F̄ and F with respect to E coincide in Ω∗ where the derivatives
exist (this existence of the derivatives is granted almost everywhere by Rademacher’s
theorem).

For any t, t′ ∈ [T ], by the main result of [25] applied to the function Eet′ 7→ F̄ et,
we have

E
[(
e⊤
t′E

⊤F̄ et − σ2

n∑
i=1

∂e⊤
i F̄ et

∂Eit′

)2]
= σ2E

[
∥F̄ et∥22

]
+ σ4E

[ n∑
i=1

n∑
i′=1

( ∂

∂Ei′t′
e⊤
i F̄ et

)( ∂

∂Eit′
e⊤
i′ F̄ et

)]
≤ σ2E

[
∥F̄ et∥22

]
+ σ4E

[ n∑
i=1

n∑
i′=1

( ∂

∂Ei′t′
e⊤
i F̄ et

)2]
.
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We now sum the above inequalities for all t, t′ ∈ [T ] to find
T∑
t=1

T∑
t′=1

E
[(
e⊤
t′E

⊤F̄ et − σ2

n∑
i=1

∂e⊤
i F̄ et

∂Eit′

)2]
≤ σ2TE[∥F̄ ∥2F ] + σ4E

[ T∑
t=1

T∑
t′=1

n∑
i=1

n∑
i′=1

( ∂

∂Ei′t′
e⊤
i F̄ et

)2]
≤ σ2TnR̄2 + σ4nT,

where for the last inequality we used that ∥F̄ ∥F ≤ R̄
√
n by construction of F̄ and

that F̄ : Rn×T → Rn×T is 1-Lipschitz, so that the Frobenius norm of the Jacobian of
F̄ (which is a matrix of size (nT ) × (nT )) is at most

√
nT . Finally, on Ω∗ we have

F = F̄ and their derivatives coincide, and by differentiating the KKT conditions of B̂
we find

∑n
i=1

∂e⊤i Fet
∂Eit′

= Âtt′ on Ω∗ for F = X(B̂ −B∗). This completes the proof.

Theorem 3.25. Let a ∈ Rp with ∥Σ−1/2a∥2 = 1. Let ξ be defined in (3.37) and
σ̂2 = ∥Y −XB̂∥2F/(nT ). Then under Assumption (A1), |σ̂/σ− 1| = oP(T

−1/2) as well
as

max{(σ2n)−1/2, (σ̂2n)−1/2}
∥∥ξ −√

nE⊤z0∥z0∥−1
2

∥∥
2
= oP(1). (3.71)

Proof of Theorem 3.25. By definition of ξ we have

(nσ2)−1/2∥ξ −E⊤z0∥2 = (nσ2)−1/2∥(B̂ −B∗)⊤X⊤z0 − (nIT×T − Â)(B̂ −B∗)⊤a∥2
which converges to 0 in probability by Lemma 3.20. Next, with χ2

T = σ−2
∥∥E⊤z0∥z0∥−1

2

∥∥2
2
,

(nσ2)−1/2
∥∥√nE⊤z0∥z0∥−1

2 −E⊤z0

∥∥
2
= (χ2

T )
1/2
∣∣1− n−1/2∥z0∥2

∣∣. (3.72)

By the Cauchy-Schwarz inequality we have E[(χ2
T )

1/2
∣∣1−n−1/2∥z0∥2

∣∣] ≤√T/nE[(∥z0∥2−√
n)]1/2. Combining Theorem 3.1.1 and Equation 2.15 in [263] yields E[(∥z0∥2 −√
n)]1/2 ≤ C for some absolute constant C. Thus, by Assumption (A1) we have

T/n → 0 so that (3.72) converges to 0 in L1, hence in probability. This proves
(σ2n)−1/2

∥∥ξ −√
nE⊤z0∥z0∥−1

2

∥∥
2
= oP(1).

We now prove the same bound with σ2n replaced by σ̂2n. Let Ω8 = {|∥E∥F/σ −√
nT | ≤ √

log n}. Then P(Ω8) → 1 by [263, Theorem 3.1.1] and

I{Ω8 ∩ Ω∗}|σ̂/σ − 1| ≤ I{Ω∗}∥X(B̂ −B∗)∥F (σ2nT )−1/2 + I{Ω8}|
√
nT − ∥E∥F/σ|(nT )−1/2

≤ (1− η3)R̄/
√
σ2T + (nT )−1/2

√
log n (3.73)

by Lemma 3.13 for the first term. This proves that |σ̂/σ − 1| = oP(T
−1/2). under

Assumption (A1) so that using 1
2
| 1
u
− 1| ≤ |u − 1| for u ∈ [1

2
, 3
2
] we obtain for n large

enough
(1/2)I{Ω8 ∩ Ω∗}|σ/σ̂ − 1| ≤ I{Ω8 ∩ Ω∗}|σ̂/σ − 1| ≤ (3.73).

Hence σ/σ̂ = 1 + oP(1), thus

(nσ̂2)−1/2
∥∥√nE⊤z0∥z0∥−1

2 −E⊤z0

∥∥
2
= (σ/σ̂)(nσ2)−1/2

∥∥√nE⊤z0∥z0∥−1
2 −E⊤z0

∥∥
2

= (1 + oP(1))oP(1) = oP(1).
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Theorem 3.6. Define the observable positive semi-definite matrix Γ̂ = (Y −XB̂)⊤(Y −
XB̂) ∈ RT×T as well as

ξ = (Y −XB̂)⊤z0 + (nIT×T − Â)(B̂ −B∗)⊤a. (3.37)

Then under Assumption (A1), there exists a random variable χ2
T with chi-square dis-

tribution with T degrees of freedom such that√
1− T

n

∥∥∥Γ̂−1/2
ξ
∥∥∥
2
−
√
χ2
T ≤ oP(1) +OP

(
min

{ T√
n
,
s2 log2(p/s)

n
√
T

})
as well as

−oP(1)−OP

( T√
n
+
sT + s log(p/s)

n

√
T
)
≤
√

1− T
n

∥∥∥Γ̂−1/2
ξ
∥∥∥
2
−
√
χ2
T .

Consequently,

(i) (1 − T
n
)
1
2∥Γ̂−1/2ξ∥2 − (χ2

T )
1/2 ≤ oP(1) holds if additionally min{T 2

n
, log

8 p
n

} → 0,
and

(ii) (1− T
n
)
1
2∥Γ̂−1/2ξ∥2−(χ2

T )
1/2 ≥ oP(1) holds if additionally T 2

n
+ sT+s log(p/s)

n

√
T → 0.

Proof of Theorem 3.6. Theorem 3.25 applied with z = z0∥z0∥−1
2 yields the bound

(σ2n)−1/2∥ξ −√
nE⊤z∥2 = oP(1). The proof then follows from Lemma 3.26.

Lemma 3.26. Let Assumption (A1) be fulfilled. Let z, ξ be random vectors valued
in Rn. Assume that z is a measurable function of X with P(∥z∥2 = 1) = 1 and let
P⊥

z = In − zz⊤. Then the random variable FT,n−T = n−T
T

∥(E⊤P⊥
zE)−1/2E⊤z∥22 has

the F distribution with degrees of freedom T and n− T , and the following holds:

(i)
√
TFT,n−T =

√
χ2
T + oP(1) as n → +∞ when T/n → 0 where χ2

T is a random
variable with chi-square distribution with T degrees of freedom,

(ii) P(λmin(Γ̂) ≥ nσ2/2) → 1,

(iii)
√
n− T∥Γ̂−1/2

E⊤z∥2 −
√
TFT,n−T ≤ oP(1) +OP(

T√
n
),

(iv)
√
n− T∥Γ̂−1/2

E⊤z∥2 −
√
TFT,n−T ≥ −oP(1)−OP(

T√
n
+ sT+s log(p/s)

n

√
T ),

(v)
√
n− T∥Γ̂−1/2

E⊤z∥2 −
√
TFT,n−T ≤ oP(1) +OP(

s(s+T ) log2(p/s)

n
√
T

).

Consequently, if (σ2n)−1/2∥ξ −√
nE⊤z∥2 = oP(1) then

(1− T
n
)1/2∥Γ̂−1/2

ξ∥2 ≤ (χ2
T )

1/2 + oP(1) +OP
(
min

{
T√
n
, log

2(p/s)

n1/4

})
(3.74)

(1− T
n
)1/2∥Γ̂−1/2

ξ∥2 ≥ (χ2
T )

1/2 − oP(1)−OP
(

T√
n
+

(sT+s log
p
s
)
√
T

n

)
. (3.75)
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Proof of Lemma 3.26. For (i), we introduce the quantity

H := (n− 1)∥(E⊤P⊥
zE)−1/2E⊤z∥22 = (n− 1)g⊤W−1g (3.76)

where g = σ−1E⊤z and W = σ−2E⊤P⊥
zE. Since E and z are independent and since

∥z∥2 = 1, g has distribution NT (0, IT×T ). P⊥
z can be orthogonally diagonalized as

Q
(∑n−1

i=1 eiei
⊤)Q⊤ where Q is an n × n orthogonal matrix, thus W =

∑n−1
i=1 nin

⊤
i

where the random vectors ni = σ−1E⊤Qei are iid with standard normal NT (0, IT×T )
distribution. Therefore W has the Wishart distribution with identity covariance and
n − 1 degrees-of-freedom. Since E⊤z and E⊤P⊥

z are independent, so are E⊤z and
(E⊤P⊥

z )(E
⊤P⊥

z )
⊤ = E⊤P⊥

zE, thus g and W are independent. By [113, Theorem
5.8] H has the Hotelling distribution with parameters T, n− 1, and

n− 1− T + 1

T

H

n− 1
∼ FT,n−1−T+1 = FT,n−T

where the right-hand side is the F distribution with degrees-of-freedom T and n− T .
Furthermore, since FT,n−T =

χ2
T /T

χ2
n−T /(n−T )

for some random variables having chi-square
distributions with respective parameter T and n− T , we have

|
√
TFT,n−T −

√
χ2
T | = |

√
χ2
T/(χ

2
n−T/(n− T ))−

√
χ2
T | = OP(

√
T )|1−

√
χ2
n−T/(n− T )|

where the last equality follows from E[(χ2
T )

1/2] ≤ E[χ2
T ]

1/2 =
√
T and the a.s. conver-

gence of χ2
n−T/(n − T ) to 1. Furthermore |1 − |a|| ≤ |1 − a2| and the Central Limit

Theorem yield

|1−
√
χ2
n−T/(n− T )| ≤ |χ2

n−T − (n− T )|
n− T

= OP((n− T )−1/2).

Thus
√
TFT,n−T = (χ2

T )
1/2 + OP((

n
T
− 1)−1/2), and since n

T
→ 0 we have

√
TFT,n−T =

(χ2
T )

1/2 + oP(1) and P(
√
TFT,n−T ≤ qT,α) → 1− α by Proposition 3.7. This proves (i).

Next we exhibit a lower bound on the eigenvalues of Γ̂. Let H = B̂ − B∗ and
consider the decomposition

Γ̂ = E⊤E + (XH)⊤(XH)− [E⊤XH + (XH)⊤E]. (3.77)

Since (XH)⊤(XH) is positive semidefinite we have

Γ̂ ⪰ E⊤E − 2∥E⊤XH∥opIT×T . (3.78)

Since E has i.i.d. N (0, σ2) entries, if smin(E) and smax(E) denote the smallest and
greatest singular values of E we have σ(

√
n −

√
T ) ≤ E[smin(E)] ≤ E[smax(E)] ≤

σ(
√
n+

√
T ) by [71, Theorem II.13]. Since smin(E) and smax(E) are 1-Lipschitz func-

tions of E when considered as a vector in RnT , Gaussian concentration as stated in [104,
Theorem B.6] yields the existence of exponential random variables Z1, Z2 ∼ Exp(1)
such that almost surely

σ(
√
n−

√
T −

√
2Z1) ≤ smin(E) ≤ smax(E) ≤ σ(

√
n+

√
T +

√
2Z2).
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Letting Z = 2max(Z1, Z2), we have

σ2(
√
n−

√
T −

√
Z)2+IT×T ⪯ E⊤E ⪯ σ2(

√
n+

√
T +

√
Z)2IT×T .

Thanks to (3.78) and the inequality (1− x)2+ ≥ 1− 2x for x ≥ 0 we have

Γ̂ ⪰ σ2n[1− 2(
√
T/n+

√
Z/n)− 2∥E⊤XH∥op/(σ2n)]IT×T . (3.79)

On the event Ω9 = {1 − 2(
√
T/n +

√
Z/n) − 2∥E⊤XH∥op/(σ2n) > 1/2} we have

λmin(Γ̂) ≥ λmin(E
⊤E − 2∥E⊤XH∥opIT×T ) ≥ σ2n/2. We now proceed to show that

P(Ω9) → 1. We have by the triangle inequality for the norm E[(·)2]1/2 that

E
[
I{Ω∗}

(√
T/n+

√
Z/n+ ∥E⊤XH∥op/(σ2n)

)2]1/2
(3.80)

≤
√
T/n+ E[Z]1/2/

√
n+ s̄/n+ E[I{Ω∗}∥E⊤XH − σ2Â∥2op/(σ2n)2]1/2

≤
√
T/n+ E[Z]1/2/

√
n+ s̄/n+ [(T/n)(1 + R̄2/σ2)]1/2

where we used Proposition 3.2(ii) and Lemma 3.14 to bound ∥Â∥op from above by s̄
on Ω∗ for the first inequality, and Lemma 3.24 the second inequality. Hence under
Assumption (A1), the previous display converges to 0. Next, P(Ωc

9) = P(Ωc
9 ∩ Ωc

∗) +
P(Ωc

9 ∩ Ω∗), Markov’s inequality and an application of Jensen’s inequality yield

P(Ωc
9) = P(Ωc

∗ ∩ Ωc
9) + P

(
1/4 ≤ I{Ω∗}

(√
T/n+

√
Z/n+ ∥E⊤XH∥op/(σ2n)

))
≤ P(Ωc

∗) + 4E
[
I{Ω∗}

(√
T/n+

√
Z/n+ ∥E⊤XH∥op/(σ2n)

)]
≤ P(Ωc

∗) + 4(3.80)

where 4(3.80) refers to four times the quantity (3.80) which converges to 0. Thus the
event Ω9 has probability approaching one and claim (ii) follows.

We now prove (iii)-(v). Let Ω(n) be a sequence of events with P(Ω(n)) → 1, Vn be
any sequence of random variables and an be any deterministic sequence of real numbers.
It is easily seen that I{Ω(n)}Vn = oP(an) implies Vn = oP(an) and I{Ω(n)}Vn = OP(an)
implies Vn = OP(an). This observation will allow us to transition seamlessly from
bounds on I{Ω(n)}Vn to bounds on Vn by choosing, e.g., Ω(n) = Ω∗∩Ω9 or other events
of probability approaching one in our problem. It will be useful to note that by the same
argument as above ϕmin(E

⊤P⊥
zE) ≥ σ2(

√
n− 1−

√
T −√

2Z3)
2
+ where Z3 ∼ Exp(1),

so that ϕmin(E
⊤P⊥

zE) ≥ σ2n/2 on an event Ω8 of probability approaching one. We
will use the following fact: if M ,N are two positive definite matrices with eigenvalues
at least 1/2 then

∥M−1/2 −N−1/2∥op ≤ 2∥M 1/2 −N 1/2∥op ≤
√
2∥M −N∥op (3.81)

using the resolvent identity M−1/2 − N−1/2 = N−1/2(N 1/2 − M 1/2)M−1/2 for the
first inequality and [144] for the second. To prove (iii), we apply (3.81) to M =
(σ2n)−1[E⊤E − 2∥E⊤XH∥opIT×T ] and N = (σ2n)−1E⊤P⊥

zE, both matrices having
eigenvalues at least 1/2 on Ω9 ∩ Ω8. Rewriting (3.78) as Γ̂−1/2 ⪯ (σ2n)−1/2M−1/2,
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applying the triangle inequality and (3.81), we have on Ω8 ∩ Ω9

∆ :=
√
n− T∥Γ̂−1/2E⊤z∥2 −

√
TFT,n−T (3.82)

=
√
n− T (∥Γ̂−1/2E⊤z∥2 − ∥(E⊤P⊥

zE)−1/2E⊤z∥2)
≤
√

(n− T )/(σ2n)∥M−1/2E⊤z∥2 −
√

(n− T )/(σ2n)∥N−1/2E⊤z∥2
≤
√

(n− T )/(σ2n)∥(M−1/2 −N−1/2)E⊤z∥2
≤
√

1− T/n
√
2
∥∥∥(σ2n)−1[E⊤zz⊤E − 2∥E⊤XH∥opIT×T ]

∥∥∥
op
∥E⊤z∥2σ−1.

The bounds used in (3.80) yield I{Ω∗}∥E⊤XH − σ2Â∥op(σ2n)−1 = OP(
√
T/n) and

I{Ω∗}∥Â∥op = OP(s̄) , hence ∥E⊤XH∥op
σ2n

≤ ∥E⊤XH−σ2Â∥op
σ2n

+ ∥Â∥op
n

= OP(
√
T√
n
) + OP(

s̄
n
).

Furthermore ∥E⊤z∥22/σ2 has χ2
T distribution, thus ∥E⊤z∥22/σ2 = OP(T ) and we obtain

∆ ≤
√
1− T/n

(
OP(

T
n
) +OP(

√
T√
n
) +OP(

s̄
n
)
)
OP(

√
T ).

Since T
n
→ 0, the right-hand side of the equality is OP(

T√
n
)+OP(

s
√
T

n
) = OP(

T√
n
)+oP(1).

For claim (iv), with ∆ defined in (3.82) a similar argument yields

|∆| ≤
√
n− T∥

(
Γ̂−1/2 − (E⊤P⊥

zE)−1/2
)
E⊤z∥2

≤
√
2
√

1− T/n(σ2n)−1
[
∥E⊤z∥2op + 2∥E⊤XH∥op + ∥XH∥2op

]
∥E⊤z∥2/σ

on Ω8∩Ω9, thus |∆| ≤
√

1− T/n
(
OP(

T
n
)+OP(

√
T√
n
)+OP(

s̄
n
)+OP(R̄

2)
)
OP(

√
T ) thanks

to Lemma 3.13(ii) for the term ∥XH∥op/(σ2n). This proves (iv).
It remains to prove (v), for which we need a more subtle argument. The impor-

tant remark is that on the one hand E⊤P⊤
z is independent of E⊤z because E has iid

N (0, σ2) entries, while on the other hand Γ̂ is not independent of E⊤z. To overcome
this lack of independence, we bound Γ̂ from below by a positive definite matrix in-
dependent of E⊤z, as follows. For a fixed subset J ⊂ [p], let P J be the orthogonal
projection matrix onto the linear span of {z} ∪ {Xej, j ∈ J} so that the rank of P J

is at most |J |+ 1. Set P⊥
J = In×n − P J . Then in the event

Ŝ ∪ supp(B∗) ⊂ J, (3.83)

we have P⊥
JX(B̂ −B∗) = 0, hence Γ̂ ⪰ (Y −XB̂)⊤P⊥

J (Y −XB̂) = E⊤P⊥
JE, thus

√
n− T∥Γ̂− 1

2E⊤z∥2 ≤
√
n− T∥(E⊤P⊥

JE)−
1
2E⊤z∥2.

For a fixed J and in the event Ŝ ∪ suppB∗ ⊂ J , we can bound from above ∆ in (3.82)
as

∆ ≤
√
n− T

[
∥(E⊤P⊥

JE)−
1
2E⊤z∥2 − ∥(E⊤P⊥

zE)−
1
2E⊤z∥2

]
≤

√
n− T

∥(E⊤P⊥
zE)−

1
2E⊤z∥2

[
∥(E⊤P⊥

JE)−
1
2E⊤z∥22 − ∥(E⊤P⊥

zE)−
1
2E⊤z∥22

]
+

=

√
n− T

∥(E⊤P⊥
zE)−

1
2E⊤z∥2

[
g⊤
{
(E⊤P⊥

JE)−1 − (E⊤P⊥
zE)−1

}
g
]
+

(3.84)
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where g = E⊤z ∼ NT (0, σ
2IT×T ) as before, the first inequality follows from Γ̂− 1

2 ⪯
(E⊤P⊥

JE)−
1
2 and the second from

√
a −

√
b ≤ (a − b)+/

√
b . For any J ⊂ [p], the

null space inclusion kerP J ⊂ kerzz⊤ holds and the matrix P⊥
z − P⊥

J is an orthog-
onal projection matrix with rank r ≤ |J | so that P⊥

z − P⊥
J = QJQ

⊤
J for the matrix

QJ ∈ Rn×r with orthonormal columns given by QJ =
∑r

k=1 uke
⊤
k where uk ∈ Rn are

orthonormal eigenvectors of P⊥
z − P⊥

J corresponding to the non-zero eigenvalues and
ek are canonical basis vectors in Rr. By the Sherman-Morrison-Woodbury identity, the
matrix in curly brackets is equal to

MJ := (E⊤P⊥
zE)−1E⊤QJ

(
Ir×r −Q⊤

JE(E⊤P⊥
zE)−1E⊤QJ

)−1

Q⊤
JE(E⊤P⊥

zE)−1.

Applying [71, Theorem II.13] to the Gaussian matrices Q⊤
JE and P⊥

zE, we find

P
(
∥E⊤QJ∥op ≥ σ(

√
T +

√
|J |+ t)

)
≤ e−t2/2,

P
(
ϕmin(E

⊤P⊥
zE) ≤ σ2(

√
n− 1−

√
T − t)2+

)
≤ e−t2/2

(3.85)

for all t > 0. As long as 1
2
≥ (

√
T+

√
|J |+t

√
n−1−

√
T−t

)2 we have

Ir×r −Q⊤
JE(E⊤P⊥

zE)−1E⊤QJ ⪰ Ir×r/2

and thus g⊤M jg ≤ 2∥Q⊤
j E(E⊤P⊥

zE)−1g∥22. Applying Theorem 6.3.2 in [263] and
because g is independent of (Q⊤

JE,P
⊥
zE), we find

P(∥Q⊤
j E(E⊤P⊥

zE)−1g/σ∥2 ≥ ∥Q⊤
j E(E⊤P⊥

zE)−1∥F+Ct∥Q⊤
j E(E⊤P⊥

zE)−1∥op) ≤ 2e−t2/2

for some absolute constant C > 0. Combined with (3.85) and the union bound,

P
[
g⊤MJg ≥ 2

( σ−1∥Q⊤
JE∥F

(
√
n− 1−

√
T − t)2+

+ Ct

√
T +

√
|J |+ t

(
√
n− 1−

√
T − t)2+

)2]
≤ 4e−t2/2.

By concentration of chi-square distributed random variables with Tr degrees of freedom
(e.g., Theorem 5.6 in [41]), we also have P(σ−1∥Q⊤

JE∥F ≥
√
T |J | + t) ≤ e−t2/2 since

Tr ≤ T |J |. Let s∗ = s̄+ s and note that for t ≥ 0,

P
({

∆ ≥ n− T√
TFT,n−T

[√Ts∗ + t+ Ct(
√
T +

√
s∗ + t)

(
√
n− 1−

√
T − t)2+

]2}
∩ Ω∗

)
≤ P

( ⋃
J⊂[p]
|J |=s∗

{
∆ ≥ n− T√

TFT,n−T

[√T |J |+ t+ Ct(
√
T +

√
|J |+ t)

(
√
n− 1−

√
T − t)2+

]2}
∩ {Ŝ ∪ supp(B∗) ⊂ J}

)

≤
∑
J⊂[p]
|J |=s∗

P
({

∆ ≥ n− T√
TFT,n−T

[√T |J |+ t+ Ct(
√
T +

√
|J |+ t)

(
√
n− 1−

√
T − t)2+

]2}
∩ {Ŝ ∪ supp(B∗) ⊂ J}

)

≤ 5

(
p

s∗

)
e−t2/2,
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where the first inequality holds because |Ŝ ∪ supp(B∗)| ≤ s∗ on Ω∗ by Lemma 3.14.
and the last one is obtained by putting together the previous concentration bounds.
Setting t = x+ (2 log

(
p
s∗

)
)1/2, we find that ∆ is smaller than

n− T√
TFT,n−T

[√Ts∗ +√2 log
(
p
s∗

)
+ x+ C(

√
2 log

(
p
s∗

)
+ x)(

√
T +

√
s∗ +

√
2 log

(
p
s∗

)
+ x)

(
√
n− 1−

√
T −

√
2 log

(
p
s∗

)
− x)2+

]2
with probability at least 1 − 5e−x2/2 − P(Ωc

∗). Since E[F−1
T,n−T ] = T/(T − 2), we have

the estimate F−1
T,n−T = OP(1). Under Assumption (A1)(iv) to control the denominator,

and by the bound log
(
p
s∗

)
≤ s∗ log(

ep
s∗
) the above display is thus

OP

( n√
T

[Ts+ s log(p/s) + sT log(p/s) + s2 log2(p/s)

n2

])
= OP

(Ts+ s log(p/s)

n
√
T

)
+OP

(sT log(p/s)

n
√
T

)
+OP

(s2 log2(p/s)
n
√
T

)
.

In the right-hand side, the first term is oP(1) thanks to Assumption (A1)(iv). For
n large enough log(p/s) ≥ 1 holds, thus the second and third term are smaller than
OP(

s(s+T ) log2(p/s)

n
√
T

). This proves (v).
In order to deduce the upper bound (3.74) from (iii) and (v), it is sufficient to show

that

min{T/√n, s(s+ T ) log2(p/s)/(n
√
T )} = o(1) + o(log2(p/s)n−1/4) (3.86)

holds under Assumption (A1). Let un = sT/n and note that un → 0 by Assump-
tion (A1). On the one hand, if T ≤ max{√nun, s} then T/

√
n ≤ max{un,

√
sT/n} =

o(1). On the other hand, if T > max{√nun, s} then

s(s+ T ) log2(p/s)

n
√
T

≤ 2sT log2(p/s)

n
√
T

=
2un log

2(p/s)√
T

≤ 2u
1/2
n log2(p/s)

n1/4
= o
( log2(p/s)

n1/4

)
.

This proves (3.86) and completes the proof.

Proposition 3.7. Let (Wn)n≥1 be a sequence of random random variables and χ2
T a

sequence of random variables with chi-square distribution with T degrees-of-freedom,
where T = Tn is function of n (in particular, T → +∞ as n → +∞ is allowed). If
α ∈ (0, 1) is a fixed constant not depending on n, T and qT,α > 0 is the quantile defined
by P((χ2

T )
1/2 ≤ qT,α) = 1− α then

(i) Wn − (χ2
T )

1/2 ≤ oP(1) implies that P(Wn ≤ qT,α) ≥ 1− α− o(1) and

(ii) Wn − (χ2
T )

1/2 ≥ −oP(1) implies that P(Wn ≤ qT,α) ≤ 1− α + o(1).

Proof of Proposition 3.7. We first prove case (i). Then by definition of qT,α and the
union bound, for any constant δ > 0 not depending on n, T ,

P(Wn > qT,α) ≤ P(oP(1) > δ) + P((χ2
T )

1/2 > qT,α − δ)

= P(oP(1) > δ) + α + P
(
(χ2

T )
1/2 ∈ [qT,α − δ, qT,α]

)
.
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We now bound the third term. Let fT : [0,+∞) → [0,∞) be the probability density
function of (χ2

T )
1/2, which admits the closed form fT (x) = (2T/2−1Γ(T/2))−1xT−1e−x2/2

for x ≥ 0. Then P((χ2
T )

1/2 ∈ [qT,α − δ, qT,α]) ≤ δ supx>0 fT (x). The supremum
supx>0 fT (x) is attained at x =

√
T − 1, the mode of the chi distribution with T

degrees of freedom, so that

supx>0 fT (x) = (2T/2−1Γ(T/2))−1(T − 1)(T−1)/2e−(T−1)/2 −−−−→
T→+∞

1/
√
π

by Stirling’s formula. Hence there exists an absolute constant C0 > 0 such that

P(Wn > qT,α) ≤ P(oP(1) > δ) + α + δC0.

For any ϵ > 0, let δ = ϵ/C0. Using by the definition of convergence in probability, for
n large enough we have P(oP(1) > δ) ≤ ϵ so that P(Wn > qT,α) − α ≤ 2ϵ. Since this
holds for any ϵ > 0, the claim is proved. The same argument can be applied in case
(ii) by reversing the inequalities.

Proof of (3.38). The convergence in distribution

√
2
(
(χ2

T )
1/2 −

√
T
)
=

(
√
2T )−1(χ2

T − T )

(χ2
T/T )

1/2/2 + 1/2
→d N (0, 1) (3.87)

holds by the Central Limit Theorem for (
√
2T )−1(χ2

T − T ) →d N (0, 1), the weak law
of large numbers for (χ2

T/T )
1/2 →P 1 and Slutsky’s theorem. If Φ(u) = P(N (0, 1) ≤ u)

is the standard normal cdf, for any subsequence (aT ′)T ′ of aT = Φ
(√

2(qT,α −
√
T )
)

converging to an accumulation point L, we have for any ϵ > 0 and T ′ large enough

P
[
Φ
(√

2((χ2
T ′)1/2 −

√
T ′)
)
≤ L− ϵ

]
≤ 1− α ≤ P

[
Φ
(√

2((χ2
T ′)1/2 −

√
T ′)
)
≤ L+ ϵ

]
so that L− ϵ ≤ 1− α+ o(1) and 1− α ≤ L+ ϵ+ o(1) by the weak convergence (3.87).
It follows that L = 1− α is the only accumulation point and qT,α −

√
T → zα/

√
2, as

desired.

3.13 Proofs for unknown covariance

3.13.1 Asymptotic normality

Proof of Theorem 3.5 under assumption (3.34). We will use throughout the proof the
notation defined after (3.31) for τj,γ(j) and ε(j). Define the direction ãj = ej(Σ

−1)
−1/2
jj =

τjej normalized such that ∥Σ−1/2ãj∥2 = 1 by construction, as well as z̃j = XΣ−1ãj ∼
Nn(0, In). Next, define ξj, ξ̂j ∈ RT by

ξj = (Y −XB̂)⊤z̃j + (nIT×T − Â)(B̂ −B∗)⊤ãj, (3.88)

ξ̂j = (Y −XB̂)⊤ẑj

[
n(ẑ⊤

j Xej)
−1
]
τj + (nIT×T − Â)(B̂ −B∗)⊤ãj (3.89)
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so that ξj coincides with (3.37) for the normalized direction ãj. Since the second term
in ξj is the same as the second term in ξ̂j,

∥ξj − ξ̂j∥2 = ∥(Y −XB̂)⊤
{
ẑjτ

−1
j

[
nτ 2j (ẑ

⊤
j Xej)

−1
]
− z̃j

}
∥2. (3.90)

Since γ(j) = −(Ip−eje
⊤
j )Σ

−1ej(Σ
−1)−1

jj in (3.31), or equivalently ej−γ(j) = τ 2j Σ
−1ej,

we have
z̃j = τjXΣ−1ej = τ−1

j X(ej − γ(j)).

Next, ẑj = Xej−X−jγ̂
(j) = X[ej−γ̂(j)] since by definition of γ̂(j), the j-th coordinate

of γ̂(j) is zero, so that X−jγ̂
(j) = Xγ̂(j). By inserting Ip×p =

∑p
k=1 ekek

⊤ in (3.90),
using that the KKT conditions of B̂ imply that maxk∈[p] ∥(Y −XB̂)⊤Xek∥2 ≤ nTλ
and the triangle inequality, we find

∥ξj − ξ̂j∥2 = τ−1
j

∥∥∥(Y −XB̂)⊤X
p∑

k=1

eke
⊤
k

{
(ej − γ̂(j))

[
nτ 2j (ẑ

⊤
j Xej)

−1
]
− (ej − γ(j))

}∥∥∥
2

≤ τ−1
j nTλ

p∑
k=1

∣∣∣e⊤
k

{
(ej − γ̂(j))

[
nτ 2j (ẑ

⊤
j Xej)

−1
]
− (ej − γ(j))

}∣∣∣ (3.91)

= τ−1
j nTλ

∥∥∥{(ej − γ̂(j))
[
nτ 2j (ẑ

⊤
j Xej)

−1
]
− (ej − γ(j))

}∥∥∥
1
.

There are two errors at this point: the estimation error ∥γ̂(j)−γ(j)∥1 and the estimation
error |nτ 2j (ẑ⊤

j Xej)
−1 − 1|, which corresponds to the relative error of the estimation of

the variance τ 2j by n−1ẑ⊤
j Xej in the linear model (3.31). Keeping these two errors in

mind, by the triangle inequality the previous display yields

∥ξj − ξ̂j∥2 ≤
τ−1
j nTλ

(ẑ⊤
j Xej)/(nτ 2j )

(∥∥∥γ(j) − γ̂(j)
∥∥∥
1
+
∥∥∥ej − γ(j)

∥∥∥
1

∣∣∣1− ẑ⊤
j Xej

nτ 2j

∣∣∣). (3.92)

For the first term in the parenthesis, inequality (3.33) holds: this is the usual ℓ1
estimation rate for the Lasso estimate γ̂(j) for the sparse estimation target γ(j) in the
linear model (3.31) with noise variance τ 2j . For the second term, inequality

τ−1
j ∥ej − γ(j)∥1 = τj∥Σ−1ej∥1 ≤ τj∥Σ−1ej∥1/20 ∥Σ−1ej∥2 ≤ ∥Σ−1/2∥op∥Σ−1ej∥1/20

(3.93)
holds thanks to the Cauchy-Schwarz inequality and τj = ∥Σ−1/2ej∥−1

2 . Furthermore,
by the triangle inequality, we have∣∣∣1− ẑ⊤

j Xej

nτ 2j

∣∣∣ ≤ ∣∣∣1− ∥ε(j)∥22
nτ 2j

∣∣∣+ ∣∣∣(ε(j) − ẑj)
⊤ε(j)

nτ 2j
− ẑ⊤

j (Xej − ε(j))

nτ 2j

∣∣∣. (3.94)

As ∥ε(j)∥22/τ 2j has χ2
n distribution, the first term is O(n−1/2) by the Central Limit

Theorem. For the next term, we use again the triangle inequality. To bound the next
term, notice that by Hölder’s inequality,

|(ε(j) − ẑj)
⊤ε(j)| = |(γ̂(j) − γ(j))⊤X⊤

−jε
(j)| ≤ ∥γ̂(j) − γ(j)∥1∥X−j

⊤ε(j)∥∞.
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Each factor in the right hand side is bounded from above as follows: ∥γ̂(j) − γ(j)∥1 =
τj∥Σ−1∥op∥γ(j)∥0OP

(√
n−1 log p

)
thanks to (3.33) and ∥X−j

⊤ε(j)∥∞ = τjOP(
√
n log p)

because X−j is independent of ε(j) and maxk∈[p]\{j}Σkk ≤ 1. This proves that |(ε(j) −
ẑj)

⊤ε(j)|/(nτ 2j ) ≤ ∥Σ−1∥op∥γ(j)∥0OP(n
−1 log p). We also have

|ẑ⊤
j (Xej − ε(j))| = |ẑ⊤

j X−jγ
(j)| ≤ ∥ẑ⊤

j X−j∥∞∥γ(j)∥1 ≤ OP(τj
√
n log p)∥γ(j)∥1

thanks to Hölder’s inequality and the KKT conditions for γ̂(j) in (3.32) to bound the ℓ∞
norm. We have ∥γ(j)∥1 ≤ ∥γ(j)∥1/20 ∥γ(j)∥2 and ∥γ(j)∥2 ≤ τ 2j ∥Σ−1ej∥2 ≤ τj∥Σ−1/2∥op by
definition of γ(j) and the Cauchy-Schwarz inequality. Combining these bounds provide
an upper bound on the right hand side of (3.94), so that∣∣∣1− ẑ⊤

j Xej

nτ 2j

∣∣∣ ≤ OP

( 1√
n

)
+ ∥Σ−1∥op∥γ(j)∥0OP

( log p
n

)
+ ∥Σ−1/2∥op

(∥γ(j)∥0 log p
n

)1/2
≤ ∥Σ−1∥op

(
∥γ(j)∥0 log(p)/n

)1/2
OP(1) (3.95)

where the second line follows by bounding from above the first two terms thanks to
assumption (3.34) and ∥Σ−1∥op ≥ 1 (this is a consequence of Σjj ≤ 1 in Assump-
tion (A1)). The bound (3.95) also provides ẑ⊤

j Xej/(nτ
2
j )

P−→1 and thus nτ 2j /(ẑ
⊤
j Xej) =

OP(1). Using (3.33), (3.93) and (3.95) to bound from above the right hand side of (3.92)
we find

∥ξj − ξ̂j∥2 ≤ nTλ
(
∥Σ−1∥op∥γ(j)∥0OP(

√
n−1 log p)

+ ∥Σ−1/2∥op∥Σ−1ej∥1/20 ∥Σ−1∥op∥γ(j)∥1/20 OP(
√
n−1 log p)

)
.

Since ∥γ(j)∥0 = ∥Σ−1ej∥0−1, this implies ∥ξj−ξ̂j∥2 ≤ nTλ∥Σ−1∥3/2op ∥Σ−1ej∥0OP(
√
n−1 log p).

Thanks to λ = O
(
σ(nT )−1/2)(1 +

√
log(p/s)/T )

)
by definition of λ, we eventually ob-

tain

(σ2n)−1/2∥ξ̂j − ξj∥2 = OP
(
[
√
T +

√
log(p/s)]∥Σ−1ej∥0

√
log(p)/n

)
(3.96)

which converges to 0 in probability thanks to assumption (3.34).
To complete the proof of Theorem 3.5 and prove asymptotic normality for some

fixed b ∈ RT with ∥b∥2 = 1, notice that

ζj :=
nã⊤

j (B̂ −B∗)b+ z̃⊤
j (Y −XB̂)(IT×T − Â/n)−1b

∥(Y −XB̂)(IT×T − Â/n)−1b∥2
satisfies ζj

d−→N (0, 1) by Theorem 3.3 applied to the normalized direction ãj. Further-
more,∣∣∣ζj − ne⊤

j (B̂ −B∗)b+ n(ẑ⊤
j Xej)

−1ẑ⊤
j (Y −XB̂)(IT×T − Â/n)−1b

(τj)−1 ∥(Y −XB̂)(IT×T − Â/n)−1b∥2

∣∣∣
=

|(ξj − ξ̂j)
⊤(IT×T − Â/n)−1b|

∥(Y −XB̂)(IT×T − Â/n)−1b∥2
≤ (σ2n)−1/2∥ξj − ξ̂j∥2∥(IT×T − Â/n)−1∥op

(
∥(Y −XB̂)(IT×T − Â/n)−1b∥−1

2 (σ2n)1/2
)
.
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In the above display, (σ2n)−1/2∥ξj−ξ̂j∥2
P−→0 when (3.34) holds, ∥(IT×T −Â/n)−1∥op P−→1

by Proposition 3.2(iii) and Lemma 3.14, and the rightmost factor converges to 1 in
probability by Theorem 3.4.

Since τj = (Σ−1)
−1/2
jj , the last claim follows by ẑ⊤

j Xej/(nτ
2
j )

P−→1 by (3.95) and
Slutsky’s theorem. We also have ∥ẑj∥2/(τj

√
n)

P−→1 since, using (3.32) and the triangle
inequality,

(τ 2j n)
−1|∥ẑj∥22 − ẑ⊤

j Xej| = (τ 2j n)
−1|ẑ⊤

j X−jγ̂
(j)|

≤ (τ 2j n)
−1OP(1)τj

√
n log p∥γ̂(j)∥1

≤ OP(1)
√

log(p)/n
[
∥γ̂(j) − γ(j)∥1 + ∥γ(j)∥1

]
/τj

≤ OP(1)
√

log(p)/n
[
∥γ(j)∥0

√
log(p)/n+ ∥γ(j)∥1/20

]
(3.97)

= oP(1)

thanks to (3.33) for the first term and the Cauchy-Schwarz inequality for the second.
The convergence to 0 in probability in the last line follows from (3.34).

Proof of Theorem 3.5 under assumption (3.35). With ξ̂j in (3.89) and ξ̃j := E⊤ẑj[n(ẑ
⊤
j Xej)

−1]τj
we have

∥ξ̂j − ξ̃j∥2 = ∥ − Â(B̂ −B∗)⊤ãj + τj(B
∗ − B̂)⊤X⊤

−jẑj[n(ẑ
⊤
j Xej)

−1]∥2
≤ ∥Â∥op∥Σ1/2(B̂ −B∗)∥op + τj∥B̂ −B∗∥2,1∥X⊤

−jẑj∥∞|[n(ẑ⊤
j Xej)]

−1|
(3.98)

thanks to ∥Σ−1/2ãj∥2 = 1 for the first term and Hölder’s inequality for the second term.
Thanks to Lemma 3.13(iii), Lemma 3.14 and Proposition 3.2 we find ∥Â∥op∥Σ1/2(B̂−
B∗)∥op = OP(s̄R̄). For the second term, thanks to (3.32) and Lemma 3.13(iv) we have

τj∥B̂ −B∗∥2,1∥X⊤
−jẑj∥∞|[n(ẑ⊤

j Xej)]
−1| ≤ OP(

√
sR̄)

√
n log p

∣∣[nτ 2j (ẑ⊤
j Xej)]

−1
∣∣

and the bound (3.95) grants ẑ⊤
j Xej/(nτ

2
j )

P−→1 thanks to the leftmost assumption in
(3.35). In summary, (σ2n)−1/2∥ξ̂j−ξ̃j∥2 = OP(n

−1/2sR̄+
√
sR̄

√
log p) = OP(

√
sR̄

√
log p)

thanks to n−1/2
√
s ≤ 1. Hence due to the rightmost assumption in (3.35),

(σ2n)−1/2∥ξ̂j − ξ̃j∥2
P−→0. (3.99)

Next, assume without loss of generality that ∥b∥2 = 1. By definition of ξ̂j in (3.89),

ne⊤
j (B̂ −B∗)b+ n(ẑ⊤

j Xej)
−1ẑ⊤

j (Y −XB̂)(IT×T − Â/n)−1b

(Σ−1)
1/2
jj σ

√
n

− ξ̃
⊤
j b

σ
√
n

=
(ξ̂j − ξ̃j)

⊤(IT×T − Â/n)−1b

σ
√
n

− ξ̃
⊤
j (IT×T − (IT×T − Â/n)−1)b

σ
√
n

. (3.100)

The first term converges to 0 in probability thanks to the previous paragraph, while
the second term is OP(s/n)∥ξ̃j∥2(σ2n)−1/2 by Proposition 3.2 and Lemma 3.14. ζj :=

99



CHAPTER 3. HIGH-DIMENSIONAL MULTI-TASK REGRESSION

[nτ 2j (ẑ
⊤
j Xej)

−1]−1τj∥ẑj∥−1
2 ξ̃j has NT (0, σ

2IT×T ) distribution by independence of E

and X. Next, ∥ξ̃j∥2 = ∥ẑj∥2[nτ 2j (ẑ⊤
j Xej)

−1]∥ζj∥2 and ∥ζj∥2 = OP(
√
T ) since E[∥ζj∥22] =

T . Furthermore, nτ 2j (ẑ
⊤
j Xej)

−1 P−→1 by (3.95). We also have τj
√
n∥ẑj∥−1

2
P−→1 by (3.97),

thanks to the leftmost assumption in (3.35) for the last line in (3.97). This shows that
∥ξ̃j∥2/(

√
n∥ζj∥2)

P−→1 and that the second term in (3.100) is OP(s/n) and converges

to 0 in probability. We conclude by observing that ξ̃
⊤
j b/(σ

√
n)

d−→N (0, 1) by Slut-
sky’s theorem thanks to nτ 2j (ẑ

⊤
j Xej)

−1 P−→1 and τj
√
n∥ẑj∥−1

2
P−→1. In the denominator,

∥(Y −XB̂)(IT×T − Â/n)−1b∥2 and σ
√
n can be used interchangeably, again by Slut-

sky’s theorem, since ∥(Y −XB̂)(IT×T − Â/n)−1b∥2/(σ
√
n)

P−→1 by Theorem 3.4.

3.13.2 Asymptotic χ2
T distribution

Proof of Theorem 3.8 under assumption (3.35) . Let ξ̂j and ξ̃j be defined respectively
in (3.89) and in the sentence preceding (3.98). Notice that the quantity in the left
hand side of (3.43) is equal to (1− T/n)1/2∥Γ̂−1/2ξ∥2 where

ξ =
(
τ−1
j

√
n

∥ẑj∥2
[
n(ẑ⊤

j Xej)
−1
]−1)

ξ̂j. (3.101)

Set z = ẑj/∥ẑj∥2. For these values of ξ and z, we have

(σ2n)−1/2∥ξ −√
nE⊤z∥2 = (σ2n)−1/2

∥∥∥ξ̂jτ−1
j

√
n

∥ẑj∥2

[
n(ẑ⊤

j Xej)
−1
]−1

−E⊤ẑj

√
n

∥ẑj∥2

∥∥∥
2

= (σ2n)−1/2
∥∥∥ξ̂j − ξ̃j

∥∥∥
2
τ−1
j

√
n

∥ẑj∥2
[n(ẑ⊤

j Xej)
−1]−1.

Hence the above is oP(1) by combining (3.99) with (3.95) and (3.97). An application
of Lemma 3.26 for these values of z and ξ yields (3.74) which completes the proof.

Proof of Theorem 3.8 under assumption (3.34) . Let ξj be defined in (3.88) Since ãj, z̃j

defined in the proof of Theorem 3.5 satisfy the assumptions of Theorem 3.6, we have
already established that (σ2n)−1/2∥ξj −

√
nE⊤z̃j∥z̃j∥−1

2 ∥2 = oP(1), cf. (3.71) with
a = ãj and z0 = z̃j.

We now proceed to show that (σ2n)−1/2∥ξ − ξj∥2 = oP(1) for ξ defined in (3.101).
By the triangle inequality and since ξ̂j in (3.101) is proportional to ξ̂j, we have

(σ2n)−1/2∥ξ − ξj∥2

=
1

σ
√
n

∥∥∥
2
ξ̂j
τ−1
j

√
n

∥ẑj∥2

[
n(ẑ⊤

j Xej)
−1
]−1

− ξj

∥∥∥
2

=
1

σ
√
n

∥∥∥(ξ̂j − ξj)
τ−1
j

√
n

∥ẑj∥2

[
n(ẑ⊤

j Xej)
−1
]−1

+ ξj

(τ−1
j

√
n

∥ẑj∥2

[
n(ẑ⊤

j Xej)
−1
]−1

− 1
)∥∥∥

2

≤ 1

σ
√
n

∥∥∥(ξ̂j − ξj)
∥∥∥
2

τ−1
j

√
n

∥ẑj∥2

[
n(ẑ⊤

j Xej)
−1
]−1

+
∥∥∥ξj∥∥∥

2

∣∣∣τ−1
j

√
n

∥ẑj∥2

[
n(ẑ⊤

j Xej)
−1
]−1

− 1
∣∣∣.
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For the first term, by (3.96) we already have (σ2n)−1/2∥ξ̃j − ξj∥2 = oP(1). Combined
with ∥ẑj∥2/(τj

√
n)

P−→1 and nτ 2j (ẑ
⊤
j Xej)

−1 P−→1 (see (3.95) and (3.97)), this proves that
the first term above is oP(1) For the remaining terms, (σ2n)−1/2∥ξj∥2 = OP(

√
T ) by

(3.71), and the question is whether

OP(
√
T )
∣∣∣τ−1

j

√
n

∥ẑj∥2

[
n(ẑ⊤

j Xej)
−1
]−1

− 1
∣∣∣ (3.102)

converges to 0 using (3.95) and (3.97). With aj = ∥ẑj∥22/(τ 2j n) and bj = ẑ⊤
j Xej/(τ

2
j n)

for brevity,

∣∣τ−1
j

√
n

∥ẑj∥2

[
n(ẑ⊤

j Xej)
−1
]−1

− 1
∣∣ = a

−1/2
j |bj − a1/2|

≤ a
−1/2
j (|bj − 1|+ |1− a

1/2
j |)

= a
−1/2
j (|bj − 1|+ |1− aj|(1 + aj)

−1).

We have |aj − 1| + |bj − 1| =
√

∥γ(j)∥0 log(p)/n OP(1) thanks to (3.95) and (3.97).
Hence thanks to (3.34), quantity (3.102) is oP(1). Combining all the pieces, we have
proved that

(σ2n)−1/2∥ξ −√
nE⊤z̃j∥z̃j∥−1

2 ∥2 ≤ (σ2n)−1/2∥ξ − ξj∥2 + oP(1) ≤ oP(1).

Applying Lemma 3.26 to ξ in (3.101) and z = z̃j∥z̃j∥−1
2 , conclusion (3.74) completes

the proof.
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Chapter 4

Statistical properties of approximate
geometric quantiles in
infinite-dimensional Banach spaces

4.1 Introduction
Data samples are sometimes modeled as points living in a metric space [37, 92, 96], or
more specifically in a manifold [206, 209], or in an infinite-dimensional normed space
[69, 216, 217]. The practioner is often interested in a measure of central tendency,
i.e., a point in the space that is most representative of the whole sample. Once such a
measure is defined, it is worth investigating its statistical properties: as the sample size
grows to infinity, does this measure approach the central tendency of the population,
and if so, at which rate? Means and medians are classical measures of central tendency
in a Euclidean space; by viewing them as solutions to optimization problems they
have been generalized to the aforementioned non-Euclidean settings. Such extensions
have been termed “Fréchet means” and “Fréchet medians”, and they are defined for a
finite sample or more generally for a probability measure [95, 147, 243, 12, 274]. Their
statistical properties have attracted much attention recently [230, 5, 167, 138].

Regarding normed spaces, the Fréchet median was introduced in the two-dimensional
Euclidean setting by Weber [272] and was later reintroduced in the same setting by
Gini and Galvani [103, 225] as well as Haldane [110], who referred to it as a “geometric”
or “geometrical” median. Throughout this chapter, we adopt Haldane’s terminology
of geometric median, but “spatial median” and “L1 median” are also common names
in the literature [46, 239]. Valadier [253, 254] extended the concept to any reflexive
Banach space and Kemperman [148] performed a systematic study of existence and
uniqueness in general Banach spaces, as well as statistical properties in finite dimen-
sion. Chaudhuri [65] and Koltchinskii [156, 157] defined geometric quantiles in Banach
spaces by slightly changing the objective function of the minimization problem. Note
that geometric quantiles include the geometric median as a special case.

Infinite-dimensional normed spaces play a major role in kernel methods [121, 281,
198] and in functional data analysis [93, 124, 127], since they are an appropriate set-
ting for the modeling of curves (e.g., radar waveforms, spectrometric data, electricity
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consumption, stock prices). Functional data is mostly modeled in the Hilbert space
L2, however there is recent interest in other functional spaces such as the space of con-
tinuous functions [74, 73]. Moreover, the non-Hilbertian infinite-dimensional setting is
relevant when working with operators [182, 158].

From a statistical standpoint, a geometric quantile is a location parameter that fits
the framework of M -estimation. Replacing the objective function with its empirical
counterpart naturally yields an estimator, usually called empirical (or sample) geomet-
ric quantile. In a Euclidean space, consistency and asymptotic normality of empirical
geometric quantiles are easily obtained by applying general results from the theory of
M -estimation [132, 108]. In infinite dimension, technical challenges arise. First, the
normed space E can be equipped with the weak, the weak∗ (if E is a dual space) or
the norm topology. These topologies give very different meanings to convergence in
the space, hence also to consistency. Consistency in the norm topology is the most
desirable mode of convergence and it is also the most difficult to establish. Second, the
non-compactness of spheres and closed balls in infinite-dimensional spaces invalidates
many reasonings commonly used in finite-dimensional M -estimation; different tech-
niques are therefore required. The recent paper [238] aims to develop a general theory
of M -estimation in Hilbert spaces, with an emphasis on the infinite-dimensional func-
tion space L2. As noted by the authors, their consistency result in the norm topology
[238, Theorem 3.4] covers only finite-dimensional spaces.

For a given geometric quantile, the estimator we consider here is an approximate
empirical version, in the sense that it minimizes the empirical objective function up to
some (possibly random) additive precision ϵn. By setting ϵn = 0 we recover the exact
empirical geometric quantile studied in [53, 100, 64]. Such a relaxation is standard in
M -estimation [132, 116, 259, 10], as it is more realistic and covers estimators obtained
by iterative optimization methods like gradient descent.

Some statistical results are known for the infinite-dimensional exact median (ℓ = 0
and ϵn = 0): Cadre [53] proved that the empirical geometric median is consistent in the
weak∗ topology when E is the dual of separable Banach space (thus also in the weak
topology when E is reflexive) and Gervini [100] obtained a similar result for the space
E = L2. Chakraborty and Chaudhuri [64] proved consistency with respect to the norm
topology in separable Hilbert spaces. Notably, their result [64, Theorem 4.2.2] has
distributional assumptions that are superfluous in the finite-dimensional case, which
suggests that they are also unnecessary in infinite dimension. Regarding asymptotic
normality, the only result in infinite dimension that we are aware of is the central limit
theorem [100, Theorem 6] which holds for the space E = L2 and under a very specific
assumption: to the probability measure on L2 corresponds a stochastic process X, and
the Karhunen–Loève decomposition of X is assumed to have only a finite number of
summands.

Recently, other estimators of geometric quantiles and median have been proposed
[57, 63, 105, 58] which have good computational and statistical properties in infinite
dimension. Most related to our work is [63], which explores the properties of a sieved
M -estimator [261, Chapter 3.4] by carrying optimization over finite-dimensional sub-
spaces. Their proof techniques are incompatible with the study of our estimator (see
Remark 4.75 below for more details). Some works [192, 205] have exploited empir-
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ical geometric quantiles and median as auxiliary tools in the construction of robust
estimators.

Contributions and outline

The main goal of this chapter is to investigate the fundamental large-sample properties
of the approximate empirical geometric quantile in infinite-dimensional Banach spaces.
We describe below how the chapter is organized, and we give a brief overview of our
contributions. In the body of the chapter, immediately before or after each result, we
explain in detail how it relates to or improves on the existing literature.

• In Section 4.2, we recall the definition of a geometric quantile and we address
the issues of existence and uniqueness. Proposition 4.8 provides a new condition
for existence of a geometric median, and we see in Corollary 4.13 that it ensures
existence in a wide variety of L1 spaces, thus extending a result by Kemperman
[148, Corollary 3.2]. In Proposition 4.19 we characterize the set of geometric
medians when the space is strictly convex and the measure is supported on some
affine line.

• In Section 4.3, we introduce our estimation setting and the approximate empirical
geometric quantile. This estimator is defined in an implicit fashion, which opens
the door for measurability issues. After detailing our treatment of measurability
woes, we consider the adjacent topic of measurable selections. Sinova et al. [238,
Proposition 3.3] state a selection result for generic M -estimators that is valid only
in σ-compact Hilbert spaces, i.e., finite-dimensional Hilbert spaces. In contrast,
our selection Theorems 4.25 and 4.26 cover a wide range of infinite-dimensional
Banach spaces. Finally, in Theorem 4.30 we provide an asymptotic uniqueness
result for empirical quantiles.

• In Section 4.4.1 we examine convergence of the estimator in the setting where
there might be multiple population quantiles. We leverage the theory of varia-
tional convergence to obtain Theorems 4.37, 4.42 and 4.43, which are asymptotic
statements on subsequences in the weak topology.

• In Section 4.4.2 we switch to the setting of a unique population quantile and we
study the consistency of our estimator.

– Section 4.4.2 is dedicated to consistency in the weak topology. As an im-
mediate consequence of the results developed in Section 4.4.1 we obtain the
consistency Theorem 4.45, which is a minor generalization of [53, Theorem
1 (i)] and [100, Theorem 2].

– In Section 4.4.2 we turn to consistency in the norm topology. Theorems 4.54
and 4.55 provide consistency in separable, reflexive, strictly convex spaces
that satisfy the Radon–Riesz property, hence as a special case in separable,
uniformly convex spaces (e.g., separable Hilbert spaces, Lp, W k,p with p ∈
(1,∞)). Our findings holds under minimal assumptions that match those of
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the finite-dimensional case. They are a significant improvement on the result
by Chakraborty and Chaudhuri [64, Theorem 4.2.2], which is only valid in
separable Hilbert spaces and requires extra distributional assumptions.

• In Section 4.5 we study asymptotic normality of the estimator in separable Hilbert
spaces. Theorem 4.73 provides weak Bahadur–Kiefer representations of the em-
pirical quantile, which generalize results by Niemiro [199, Theorem 5], Arcones
[11, Proposition 4.1] and Van der Vaart [259, Theorem 5.1] to infinite dimension.
As an immediate consequence, Theorem 4.77 states the asymptotic normality of
the empirical quantile, under distributional assumptions that exactly match those
of the finite-dimensional case. This improves significantly on Gervini’s normality
result [100, Theorem 6]. This is the first central limit theorem for geometric
quantiles that holds in a generic Hilbert space and under minimal assumptions.

The setting considered in this chapter is quite general compared to the existing lit-
erature: we consider geometric quantiles instead of geometric medians, general Banach
spaces instead of Hilbert spaces, and our estimator is based on approximate minimiza-
tion instead of exact minimization. However, the novelty of our contributions is not
based solely on this generality. Indeed, our results on consistency in the norm topology
and asymptotic normality improve the state of the art even in the special case where
the parameter is the geometric median (ℓ = 0), E is a Hilbert space, and the estimator
is the exact empirical median (ϵn = 0).

Proofs are deferred to appendices. For the reader’s convenience, we provide precise
references whenever we invoke a technical result from topology, functional analysis or
measure theory.

4.2 Geometric quantiles, existence and uniqueness

4.2.1 Setting

Definition 4.1. Let (E, ∥·∥) be a real normed vector space and let (E∗, ∥·∥∗) denote its
continuous dual space. Let ℓ ∈ E∗ be such that ∥ℓ∥∗ < 1 and µ be a Borel probability
measure on E. We define the objective function ϕℓ as follows:

ϕℓ : E → R

α 7→
∫
E

(∥α− x∥ − ∥x∥)dµ(x)− ℓ(α).

We let X be a random element from some probability space (Ω,F ,P) to (E,B(E)) such
that X has distribution µ, i.e., the corresponding pushforward measure is equal to µ.
With this notation, the objective function rewrites as ϕℓ : α 7→ E[∥α−X∥−∥X∥]−ℓ(α).

The following proposition gives basic properties of ϕℓ. Its proof is in Section 4.7.1.

Proposition 4.2. 1. ϕℓ is well-defined, (1 + ∥ℓ∥∗)-Lipschitz and convex.

2. lim∥α∥→∞
ϕ0(α)
∥α∥ = 1 and lim∥α∥→∞ ϕℓ(α) = ∞.
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3. ϕℓ is bounded below.

Definition 4.3. We consider the following minimization problem:

inf
α∈E

ϕℓ(α). (4.1)

We let Quantℓ(µ) denote the subset of E where the infimum in (4.1) is attained. The
elements of Quantℓ(µ) are called geometric ℓ-quantiles of the measure µ. When ℓ = 0
we speak of geometric medians and we write Med(µ) instead of Quant0(µ).

Remark 4.4. When no ambiguity arises, we will drop the ℓ-subscripts and write ϕ,
Quant(µ) for the sake of legibility.

The infimum in (4.1) is finite by Proposition 4.2. The set Quant(µ) may be empty,
a singleton or contain several elements. Some conditions for the existence and the
uniqueness of minimizers are given in the next subsections.

4.2.2 The univariate case

We start with the univariate setting where E = R with the absolute value as norm. We
identify ℓ with the corresponding scalar in (−1, 1), so that ℓ(α) = ℓ · α and we define
p = (1+ℓ)/2 which lies in (0, 1). We show, as is well-known, that the notion of geometric
ℓ-quantile coincides with the usual definition of p-th quantile in one dimension: α must
satisfy both P(X ≤ α) ≥ p and P(X ≥ α) ≥ 1− p.

Proposition 4.5. We write FX for the cdf of X.

1. Let M1 = {α ∈ R : P(X ≤ α) ≥ p} = {α ∈ R : FX(α) ≥ p},
M2 = {α ∈ R : P(X ≥ α) ≥ 1− p} = {α ∈ R : FX(α

−) ≤ p}.
Then M1 is an interval of the form [min(M1),∞), and M2 is an interval of the
form (−∞,max(M2)].

2. The inequality min(M1) ≤ max(M2) holds and Quant(µ) is the nonempty closed
bounded interval M1 ∩M2 = [min(M1),max(M2)].

The statements of this subsection are all proved in Section 4.7.2. Existence is
therefore guaranteed and uniqueness reduces to a standard problem. For the sake of
completeness, the following corollary provides conditions for uniqueness of ℓ-quantiles
in the univariate case, which we expect are already known. The first condition is stated
in terms of the measure µ and the second in terms of the cdf FX . The third item gives
more details about the set F−1

X ({p}) when there is more than one quantile.

Corollary 4.6. With the notation of Proposition 4.5,

1. µ has at least two ℓ-quantiles if and only if there exist real numbers α1 < α2 such
that µ((−∞, α1]) = p and µ([α2,∞)) = 1− p.

2. µ has a unique ℓ-quantile if and only if the set F−1
X ({p}) is empty or a singleton.

106



CHAPTER 4. GEOMETRIC QUANTILES IN INFINITE DIMENSION

3. If µ has at least two ℓ-quantiles, then FX < p over (−∞,min(M1)), FX = p over
[min(M1),max(M2)) and FX > p over (max(M2),∞).

Remark 4.7. In particular, if a univariate measure has more than one ℓ-quantile it is
possible to split its mass between two disjoint subsets (more precisely, between two
disjoint half-lines). Besides, if α1 < α2 are as in the first item of Corollary 4.6, then
the open interval (α1, α2) has measure 0, hence supp(µ)∩ (α1, α2) = ∅ and the support
of µ is disconnected. These two observations give convenient sufficient conditions on
the measure µ that ensure the uniqueness of quantiles in one dimension. If the cdf of
the associated random variable X is known, then uniqueness can be assessed simply
by considering the preimage of p by FX .

4.2.3 Existence in the general case

We turn now to the existence of geometric quantiles in the general setting of Defi-
nition 4.1. First we list some concepts and notations from topology and functional
analysis that we will use below. Let (F, ∥ · ∥) be a normed vector space over R or C20.
We recall that F ∗ and F ∗∗ denote respectively the topological dual and second dual
of F . These two vector spaces are equipped with their dual norms, which we write
respectively ∥ · ∥∗ and ∥ · ∥∗∗. Let J : F → F ∗∗ be the canonical linear isometry from F
into F ∗∗. F is said to be reflexive if J is surjective. We will say that the subspace J(F )
is 1-complemented in F ∗∗ if there is a linear projection operator P : F ∗∗ → F ∗∗ with
range equal to J(F ) and operator norm ∥P∥op equal to 1. F is said to be separable if it
contains a countable dense subset. We give proofs for the statements of this subsection
in Section 4.7.3.

The next proposition provides three sufficient conditions for existence, which involve
only topological properties of the space E, independently of the measure µ.

Proposition 4.8. The measure µ has at least one geometric ℓ-quantile in any of the
following cases:

1. [253, 254] E is a reflexive space.

2. [148] There is an isometric isomorphism I between E and F ∗, where F is a
separable normed space and ℓ ◦ I−1 ∈ J(F ).

3. E is separable, J(E) is 1-complemented in E∗∗ and ℓ = 0.

Remark 4.9. For medians (ℓ = 0), the first condition of Proposition 4.8 was given
by Valadier [253, 254], and the second was stated in less generality by Kemperman
[148]. These two conditions already cover a large number of spaces that are used
in applications, with the notable exception of L1 spaces. Kemperman states that
“medians always exist for many L1 spaces”, but he only proves it in the very special
case L1(S,P(S), ν) where S is a countable set and ν is a measure supported on a subset
of S [148, Corollary 3.2].

Remark 4.10. Our third condition, which is new, is more intricate as it exploits com-
plementability in the second dual: Lemma 4.81 and the proof of Proposition 4.8 in
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Section 4.7.3 reveal a link between geometric medians of µ and geometric medians of
some pushforward of µ in E∗∗. This third condition covers separable L1 spaces, and
separability is verified in a number of usual settings, as seen in the first item of Corol-
lary 4.13. The proof of existence in this case is technical. The requirement that ℓ = 0
seems to be an artifact of our proof technique.
Remark 4.11. Items 1. and 2. in the proposition clearly imply that E is a Banach
space. For the third, letting P : E∗∗ → E∗∗ denote a bounded linear projection with
range J(E), we have J(E) = ker(Id−P ). Therefore, J(E) is a closed subspace of E∗∗,
so the space (J(E), ∥ · ∥∗∗) is Banach and so is (E, ∥ · ∥). It is unclear to us if there is
sufficient condition that would not require the completeness of E.

The following corollaries provide a list of spaces in which ℓ-quantiles or medians
are guaranteed to exist. Among these, some can originally be defined as vector spaces
over the field C21; this is especially the case when F is a complex Hilbert space or
when F is the space of Schatten p-class operators on a complex Hilbert space. In
such circumstances we put E = FR, the real vector space obtained by restriction of the
scalar multiplication to R×F . To avoid notational overburden we keep these subscripts
implicit in the statements of the corollaries.

Corollary 4.12. The measure µ has at least one ℓ-quantile in any of the following cases
(as explained in the previous paragraph each space is viewed as a real vector space):

1. E is finite-dimensional and equipped with any norm,

2. E is a Hilbert space equipped with its Hilbert norm,

3. E = Lp(S,A, ν) equipped with the Lp norm, where 1 < p < ∞ and (S,A, ν) is
any measure space,

4. E = W k,p(Ω) a Sobolev space with the Sobolev norm ∥u∥k,p = (
∑

|α|≤k ∥Dαu∥pLp(Ω))
1/p,

where Ω is an open subset of Rn, k and n are positive integers and 1 < p <∞,

5. E = LΦ(S,A, ν) an Orlicz space equipped with its Orlicz norm or its gauge (Lux-
emburg) norm, where (S,A, ν) is any measure space, Φ is a Young function such
that Φ and its complementary function Ψ both satisfy the ∆2 condition (see [218]
for terminology),

6. E = Sp(H) the space of Schatten p-class operators equipped with the Schatten
p-norm, where 1 < p <∞ and H is a Hilbert space.

Corollary 4.13. The measure µ has at least one geometric median in any of the
following cases (each space is viewed as a real vector space):

1. E = Lp(S,A, ν) equipped with the Lp norm, where p ∈ {1,∞}, (S,A, ν) is a
sigma-finite measure space and A is countably generated. This includes the case
where (S,A) is a separable metric space with its Borel sigma-algebra and the case
where (S,A) is a countable space with its discrete sigma-algebra.

2. E = BV (Ω) the space of functions of bounded variation equipped with the BV
norm, where Ω is an open subset of Rn.
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3. E = S1(H) the space of trace-class operators equipped with the trace norm, where
H is a separable Hilbert space.

4. E = B(H) the space of bounded operators on a separable Hilbert space H, equipped
with the operator norm.

Remark 4.14. The nonexistence of geometric quantiles is a possibility. In [170] the
authors consider the Banach space c0 of real sequences that converge to 0, equipped
with the supremum norm, and they construct a Borel probability measure µ such that
Med(µ) = ∅.

4.2.4 Uniqueness in the general case

Now that we have shed some light on the existence of geometric quantiles, we turn
to the question of uniqueness. Proofs for this subsection are given in Section 4.7.4.
Contrary to the univariate case, in general spaces the set of minimizers Med(µ) may
be empty. Consequently when we speak of uniqueness in this section, we mean the
situation where a measure has at most one ℓ-quantile.

Unlike existence, the study of uniqueness involves geometric properties of both the
space E and the measure µ.

Definition 4.15. Let (F, ∥ · ∥) be a normed space over R or C22.

1. F is strictly convex (or strictly rotund) if for every distinct unit vectors x, y ∈ F ,
the inequality ∥x+ y∥ < 2 holds. Equivalently, the unit sphere of F contains no
nontrivial line segments.

2. F is uniformly convex (or uniformly rotund) if

∀ϵ > 0,∃δ > 0,∀(x, y) ∈ E2, [∥x∥ = ∥y∥ = 1 and ∥x−y∥ ≥ ϵ] =⇒ ∥1
2
(x+y)∥ ≤ 1−δ.

Definition 4.16. We let M∼ denote the set of Borel probability measures µ on E that
are not concentrated on a line, i.e., µ(L) < 1 for every affine line L. We write M− its
complement.

The following proposition gives a sufficient condition for Quant(µ) to contain at
most one element; this condition already appears for medians in [148, 191] and for
quantiles in [65]. As a novel result, we provide a converse statement that exhibits an
interplay between uniqueness and the geometry of the space E.

Proposition 4.17. 1. [148, 191, 65] If E is strictly convex and µ ∈ M∼, then µ
has at most one ℓ-quantile.

2. If any of these two conditions is dropped, µ may have more than one ℓ-quantile.

3. Suppose that every µ ∈ M∼ has at most one median. Then E is strictly convex.
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As a consequence, when µ ∈ M∼ we obtain the following list of spaces for which
Quant(µ) is a singleton, i.e., there is both existence and uniqueness of a median. Re-
markably, all these spaces are reflexive. Besides, the list includes every uniformly
convex Banach space. Uniform convexity is a strong condition, since it implies both
strict convexity and reflexivity. As in Corollary 4.12, complex vector spaces are re-
garded as real vector spaces and we also make R-subscripts implicit in the following
statement.

Corollary 4.18. Let µ ∈ M∼ be a measure on E. The existence and uniqueness of
a geometric ℓ-quantile for µ is guaranteed in any of the following cases (each space is
viewed as a real vector space):

1. E is a uniformly convex Banach space, e.g.,

(a) E is finite-dimensional and strictly convex,
(b) E is a Hilbert space equipped with its Hilbert norm,
(c) E = Lp(S,A, ν) as in Corollary 4.12,
(d) E = W k,p(Ω) as in Corollary 4.12,
(e) E = Sp(H) as in Corollary 4.12,

2. E = LΦ(S,A, ν) an Orlicz space equipped with its Orlicz norm, where (S,A, ν)
is a sigma-finite measure space and ν is diffuse, Φ is a strictly convex N-function
such that both Φ and its complementary function Ψ satisfy the ∆2 condition,

3. E = LΦ(S,A, ν) an Orlicz space equipped with its gauge (Luxemburg) norm,
where (S,A, ν) is a measure space and ν is diffuse on some set of positive mea-
sure, Φ is a finite strictly convex Young function such that both Φ and its com-
plementary function Ψ satisfy the ∆2 condition.

So far we have tackled uniqueness for measures in M∼. In the next proposition we
consider members of M−, i.e., measures that are concentrated on some affine line. We
show that if E is strictly convex, any geometric median must lie on the supporting line.
The problem thus becomes completely univariate so Proposition 4.5 applies: Med(µ) is
a nonempty closed line segment and uniqueness can be addressed with Corollary 4.6.
Strikingly, this does not hold for ℓ-quantiles with ℓ ̸= 0. As in Proposition 4.17 we
provide a converse that illustrates the interconnection between medians of measures
and geometric features of the space. To the best of our knowledge, these results are
new.

Proposition 4.19. Let µ ∈ M− and let L denote an affine line such that µ(L) = 1.

1. If E is strictly convex, then the set of medians Med(µ) is a nonempty closed line
segment included in L.

2. Without the strict convexity hypothesis, the conclusion of 1. may not be true.

3. In 1., Med(µ) cannot be replaced with Quantℓ(µ) for arbitrary ℓ ̸= 0.

4. Suppose that for every µ ∈ M−, Med(µ) is a closed line segment included in the
affine line supporting µ. Then E is strictly convex.
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4.3 Empirical geometric quantiles: measurability, se-
lections and uniqueness

4.3.1 Estimation setting

Estimating geometric medians fits the general framework of M -estimation [133, Section
6.2], which we quickly recall in its simplest form. There is a parameter space Θ, a
probability space (X ,A, µ), a contrast function φ : X × Θ → R that is integrable in
the first argument, giving rise to the objective function ϕ

ϕ : θ 7→
∫
X
φ(x, θ)dµ(x).

Given an i.i.d. sample X1, X2 . . . ∼ µ defined on a probability space (Ω,F ,P), an
estimator is obtained by approximate minimization of the empirical objective function
ϕ̂n

ϕ̂n : θ 7→ 1

n

n∑
i=1

φ(Xi, θ).

In our case, Θ = X = E a real normed vector space, A = B(E) its Borel σ-algebra,
µ is a fixed Borel probability measure on E, and φ is the function

φ : (x, α) 7→ ∥α− x∥ − ∥x∥ − ℓ(α).

The following definition gives the precise setting and provides additional terminology.

Definition 4.20. Let (Xn)n≥1 be a sequence of i.i.d. E-valued Borel random elements
defined on some probability space (Ω,F ,P), each with distribution µ. Additionally let
(ϵn)n≥1 be a sequence of (not necessarily measurable) maps from Ω to R≥0. For every
n ≥ 1 we define the empirical measure µ̂n = 1

n

∑n
i=1 δXi

, the empirical objective function
ϕ̂n : α 7→ 1

n

∑n
i=1(∥α−Xi∥ − ∥Xi∥)− ℓ(α) and the set of ϵn-empirical ℓ-quantiles

ϵn-Quant(µ̂n) = {α ∈ E : ϕ̂n(α) ≤ inf(ϕ̂n) + ϵn}.
We say that (α̂n)n≥1 is a sequence of ϵn-empirical ℓ-quantiles if for all n ≥ 1, α̂n is a
(not necessarily measurable) map from Ω to E such that α̂n ∈ ϵn-Quant(µ̂n).

The quantities Xn, ϵn, µ̂n, ϕ̂n, ϵn-Quant(µ̂n), α̂n all depend on ω ∈ Ω; when needed,
the dependence will be indicated with a superscript, e.g., Xω

n , ϵωn, µ̂ω
n, ϕ̂ω

n, α̂ω
n. In the

definition of (α̂n) above, we mean more precisely that

∀n ≥ 1,∀ω ∈ Ω, α̂ω
n ∈ ϵωn-Quant(µ̂ω

n).

As is customary in the theory of M -estimation, we consider approximate minimizers
of ϕ̂n, i.e., elements of E that are ϵn-optimal. When ϵn = 0 we recover exact empirical
ℓ-quantiles and in that case we write Quant(µ̂n) instead of 0-Quant(µ̂n). For each
n, the function ϕ̂n is obtained by replacing the measure µ in Definition 4.1 with the
empirical measure µ̂n. Consequently the existence and uniqueness results developed
in Section 4.2 apply equally well to each ϕ̂n. By Proposition 4.2 the infimum of ϕ̂n

is finite, thus the set ϵn-Quant(µ̂n) is nonempty whenever ϵn is positive. However the
following assumption is needed to cover the case ϵn = 0.
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Assumption (A2). E is a separable Banach space that verifies any of the conditions
in Proposition 4.8.

Under this assumption a sequence of exact empirical ℓ-quantiles is always guaran-
teed to exist. Even though the completeness of the normed space E is a byproduct
of Proposition 4.8, we add it to the assumption for the sake of clarity. Moreover the
separability of E is a natural hypothesis, as it will be needed for crucial facts, such as
the equality between σ-algebras B(E2) = B(E) ⊗ B(E) and the weak convergence of
µ̂n to µ with P-probability 1.

4.3.2 Measurability

Measurability issues arise naturally in this chapter, especially because we will state
asymptotic results valid for any sequence (α̂n)n≥1 of ϵn-empirical ℓ-quantiles, regardless
of whether each α̂n is measurable. Therefore, we will repeatedly want to evaluate the
probability of subsets of Ω that may not be in the σ-algebra F . Besides, in order to
match the generality of the M-estimation works by Huber [132], Perlman [210] and
Dudley [83], we do not require that the maps ϵn of Definition 4.20 be measurable. And
yet, we will often assume that the sequence (ϵn)n≥1 converges stochastically to 0 in
some way.

To resolve these measurability difficulties we will employ the notions of outer and
inner probability P∗,P∗. For any subset B of Ω they are defined respectively as P∗(B) =
inf{P(A) : A ∈ F , B ⊂ A} and P∗(B) = 1− P∗(Bc). Some useful properties of P∗ and
P∗ are stated in Lemma 4.85 of Section 4.8.1. Further properties can be found in
Chapter 1.2 of Van der Vaart and Wellner [261].

We make use of the adjective “stochastic” to designate any object or notion that
depends on ω ∈ Ω and is subject to a lack of measurability. Conversely we reserve the
adjective “random” for quantities that are measurable. We will say that a stochastic
property holds P∗-almost surely if the subset of Ω where the property is verified has
inner probability 1.

A theory of stochastic convergence for arbitrary maps can be found in Chapter 1.9
of [261]. We recall the definitions of three modes of convergence that will be needed in
this chapter, as well as some asymptotic notations.

Definition 4.21. Let Y, Y1, Y2, . . . be maps from Ω to some topological space F .

1. (Yn)n≥1 converges P∗-almost surely to Y if P∗({ω : Y ω
n → Y ω}) = 1.

We assume next that F is a metric space with metric d.

2. (Yn)n≥1 converges in outer probability to Y if P∗(d(Yn, Y ) > ϵ
)
→ 0 for each

ϵ > 0.

3. (Yn)n≥1 converges outer almost surely to Y if there exist random variables ∆1,∆2, . . .
such that d(Yn, Y ) ≤ ∆n for each n and (∆n)n≥1 converges P-almost surely to 0.

Remark 4.22. Van der Vaart and Wellner refer to the first mode as “convergence al-
most surely”. However, for clarity and consistency with the terminology of the pre-
ceding paragraph, when measurability is not guaranteed we prefer the terminology
“convergence P∗-almost surely”.
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Definition 4.23. Let Y1, Y2, . . . be maps from Ω to some normed space (F, ∥ · ∥) and
(an)n≥1 be a sequence of nonzero real numbers.

1. We write Yn = oP∗(an) to signify that a−1
n Yn converges in outer probability to 0.

2. We write Yn = OP∗(an) when for every ε > 0, there exists M > 0 such that

∀n ≥ 1, P∗(∥a−1
n Yn∥ > M) < ε.

4.3.3 Measurable selections

While we have the tools to deal with non-measurability, it is generally more convenient
and less technical to work with measurable quantities. This is why statisticians often
look for measurable selections, which we define next.

Definition 4.24. Let n ≥ 1. We say that the map α̂n : Ω → E is a measurable
selection from the set ϵn-Quant(µ̂n) if it is (F ,B(E))-measurable and α̂ω

n belongs to
ϵωn-Quant(µ̂ω

n) for each ω ∈ Ω.

When such a selection is found for each n ≥ 1, one considers the resulting sequence
of Borel random elements (α̂n)n≥1, the analysis of which involves fewer technicalities
compared with a non-measurable sequence.

Previous works related to M -estimation (e.g., [8, 108, 234, 2, 36, 238]) have relied
on [142, Lemma 2; 212, Theorem 1.9; 47, Corollary 1] to obtain measurable selections.
Lemma 2 in [142] is only suited to the finite-dimensional case. The statement of [212,
Theorem 1.9] (resp., of [47, Corollary 1]) has a local compactness (resp., σ-compactness)
assumption, which in our setting requires that E be locally compact (resp., σ-compact).
Either of these conditions excludes infinite-dimensional Banach spaces and is therefore
too restrictive for our purposes. Another classical reference for measurable selections
is the survey by Wagner [266] and its update [267]. In Section 9 of [266] selection
results are listed for the setting of optimization problems. In most of the references it
is assumed that “F is compact-valued”, which means for us that E is compact. One
exception is [169, Proposition 14.8] but their “Suslin operation” assumption does not
hold here. The second exception is Theorem 1 in Schäl [228] which is applicable to
ϵn-empirical ℓ-quantiles under a mild assumption on ϵn. We obtain as a consequence
the following theorem, however we prove it via a different and simpler technique in
Section 4.8.2.

Theorem 4.25. Let n ≥ 1. Assume that E is separable and ϵn is a positive random
variable. Then a measurable selection from ϵn-Quant(µ̂n) exists.

This selection theorem is not applicable when the map ϵn is allowed to take the
value 0. In that situation the existence of empirical ℓ-quantiles is no longer automatic
and we will need Assumption (A2). Using Theorem 2 (ii) in Brown and Purves [47]
or Proposition 4.2 (c) in Hess [116], we obtain a universally measurable selection from
the set Quant(µ̂n) = 0-Quant(µ̂n) (see Definition 4.86 of the Appendix). Universal
measurability is a weaker concept than measurability and the following assumption is
needed to obtain measurability in the usual sense.
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Assumption (A3). (Ω,F ,P) is a complete probability space, i.e.,

∀(S,N) ∈ P(Ω)×F , [S ⊂ N and P(N) = 0] =⇒ S ∈ F .

This is not a strong assumption since a probability space can always be uniquely
completed. Besides, if (Ω,F ,P) is complete, subsets A ⊂ Ω such that P∗(A) = 0 or
P∗(A) = 1 are automatically in F (see Problem 10 in [261, Chapter 1.2]). We can now
state a second selection theorem, which holds irrespective of the measurability of ϵn.

Theorem 4.26. Let n ≥ 1. Under Assumptions (A2) and (A3), a measurable selection
from Quant(µ̂n) exists, hence from ϵn-Quant(µ̂n) as well.

Remark 4.27. Sinova et al. [238, Proposition 3.3] state a selection result for generic
M -estimators in separable Hilbert spaces. Their proof relies on [47, Corollary 1],
which results in a σ-compactness requirement on the space and excludes the infinite-
dimensional setting. Our selection Theorems 4.25 and 4.26 are an improvement in this
regard.

4.3.4 Uniqueness of empirical quantiles

We close this section with a novel uniqueness result for empirical ℓ-quantiles in the
case where E is strictly convex and µ is in M∼, i.e., µ(L) < 1 for every affine line L.
In this setting, µ has at most one geometric ℓ-quantile by Proposition 4.17. First we
show a stronger separating inequality for µ: the measure cannot get arbitrarily close
to 1 on affine lines. Proofs for this subsection are in Section 4.8.3.

Proposition 4.28. Each µ ∈ M∼ is separated away from 1 on affine lines: there
exists δµ ∈ (0, 1] such that for any affine line L we have the inequality µ(L) ≤ 1− δµ.

To show that empirical measures µ̂n have at most one ℓ-quantile, it suffices to prove
that they inherit the separation property of µ. To this end, we establish a Glivenko–
Cantelli result for the class of affine lines. In fact we obtain one for the slightly larger
class

C = {u+ Rv : (u, v) ∈ E2}
of singletons and affine lines: this is no more difficult and actually removes some
notational burden in the proof. We show that C is Vapnik–C̆ervonenkis, then we use
the theory of empirical processes.

The class C is neither countable, nor does it contain a countable subclass C0 verifying
supC∈C |µ̂n(C)−µ(C)| = supC∈C0 |µ̂n(C)−µ(C)|, so the supremum of interest may not
be measurable. Two standard workarounds are described in Section 2.2 of Ledoux
and Talagrand [168]. The first approach is to focus instead on the essential (or lattice)
supremum of the process (|µ̂n(C)−µ(C)|)C∈C, which is equal to supC∈C0 |µ̂n(C)−µ(C)|
for some countable C0 ⊂ C (see, e.g., [237, Definition and Lemma p.230]). However
this restricted supremum is not suitable for obtaining the separation property, since
we want an upper bound on µ̂n(L) for every affine line L. The second approach is
to replace the process with a separable version (ΛC)C∈C. Then for fixed C ∈ C, the
equality |µ̂ω

n(C) − µ(C)| = Λω
C holds for ω in the complement of a null set NC . The
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uncountable union ∪C∈CNC may not be in F and it may not have outer probability 0
either; this is a major hindrance for our purpose. Other tools are therefore needed to
deal with the supremum: we make use of the theory developed by Van der Vaart and
Wellner [261].

We apply a Glivenko–Cantelli theorem based on random L1-entropy and sym-
metrization: this forces (Ω,F ,P) in Definition 4.20 to be the countable product space
(EN,B(E)⊗N, µN) and Xn to be the n-th coordinate map. This is not a strong require-
ment since it could be assumed without loss of generality. Additionally we have to
verify that the corresponding class of indicators F = {1C : C ∈ C} is µ-measurable
(see [261, Definition 2.3.3]). For this, standard methods described in [261, Examples
2.3.4 and 2.3.5] are not applicable. To resolve that challenging technicality, our proof
makes use of image admissible Suslin classes, a notion developed by Dudley [81, Section
10.3; 82, Section 5.3]. Now we can state the following proposition.

Proposition 4.29. Assume E is separable, (Ω,F ,P) is the product probability space
(EN,B(E)⊗N, µN) and Xn : Ω → E is the n-th coordinate map for each n ≥ 1. Let

C = {u+ Rv : (u, v) ∈ E2}
denote the class of singletons and affine lines in E. Then the stochastic quantity

sup
C∈C

|µ̂n(C)− µ(C)|

converges to 0 outer almost surely.

Combining Propositions 4.28 and 4.29 yields the following asymptotic uniqueness
theorem, which is new.

Theorem 4.30. We require the assumptions of Proposition 4.29, strict convexity of
E and µ ∈ M∼. Then the following holds P∗-almost surely: for large enough n the
empirical measure µ̂n has at most one geometric ℓ-quantile.

In other words, with P∗-probability 1 the set Quant(µ̂n) is empty or a singleton for
large enough n. If we add the existence and the completeness assumptions (A2), (A3)
then Theorem 4.26 applies and there exists a measurable selection from Quant(µ̂n) for
each n. In that case, P-almost surely, the selection is trivial for large enough n.

4.4 Convergence of approximate empirical quantiles
In this section we investigate the asymptotic behaviour of the set-valued stochastic
sequence (ϵn-Quant(µ̂n))n≥1. The analysis can be carried out in two different settings:

(a) µ is allowed to have multiple ℓ-quantiles,

(b) µ has a unique ℓ-quantile, say α⋆: Quant(µ) = {α⋆}.
In setting (a) we look for any kind of statement that may indicate closeness of ϵn-Quant(µ̂n)
to Quant(µ) for large n. Setting (b) fits the usual framework of estimation theory: we
consider for each n an element α̂n from the set ϵn-Quant(µ̂n), and we are interested in
the convergence of the stochastic sequence (α̂n)n≥1 to the unknown parameter α⋆.
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4.4.1 The case of multiple true quantiles

Variational convergence

Asymptotic statements about empirical quantiles, even in the absence of uniqueness,
can be obtained using the theory of variational convergence [14; 20; 129, Section 7.5;
40, Section 6.2], which introduces several different but related ways in which sequences
of sets and functions converge. We will be interested in two such kinds of convergence:
the first one is epi-convergence, also known as Kuratowski–Painlevé convergence [40] or
as Γ-convergence [70, 43]; and the second is Mosco-convergence [196, 21, 20, 40]. The
following definitions are given in the context of lower semicontinuous proper convex
functions on a normed space. This setting, which is well suited for our purposes but
not the most general, allows for simpler definitions.

Definition 4.31. Let F be a real normed space and f, (fn)n≥1 be lower semicontinuous
convex functions defined on F with values in R.

1. The sequence (fn)n≥1 epi-converges to f if for each x ∈ E both of the following
conditions hold:

(i) lim infn fn(xn) ≥ f(x) for every sequence (xn)n≥1 that converges in the norm
topology to x,

(ii) lim supn fn(xn) ≤ f(x) for some sequence (xn)n≥1 that converges in the norm
topology to x.

2. The sequence (fn)n≥1 Mosco-converges to f if for each x ∈ E both of the following
conditions hold:

(i) lim infn fn(xn) ≥ f(x) for every sequence (xn)n≥1 that converges to x in the
weak topology of E,

(ii) lim supn fn(xn) ≤ f(x) for some sequence (xn)n≥1 that converges in the norm
topology to x.

Since convergence in the norm topology implies convergence in the weak topol-
ogy, Mosco-convergence implies epi-convergence. If F is finite-dimensional, they are
equivalent.

Various works in statistics (e.g., [84, 116, 271, 29, 102, 76, 226, 231]) and stochastic
optimization (e.g., [146, 222, 152, 176, 277, 117]) have leveraged variational convergence
to study the consistency of estimators defined through a minimization procedure. In-
deed, the following proposition shows that epi- or Mosco-convergence of (fn) to f
results in some kind of asymptotic closeness between the convex sets εn- argmin fn =
{x : fn(x) ≤ inf(f) + εn} and argmin f . Given (εn)n≥1 a deterministic sequence of
nonnegative real numbers, we say that (xn)n≥1 is a sequence of εn-minimizers if for all
n ≥ 1, xn ∈ εn- argmin fn.

Proposition 4.32. Let F be a normed vector space and f, (fn)n≥1 be lower semicontin-
uous, proper convex functions defined on F with values in R. Let (εn)n≥1 be a sequence
of nonnegative real numbers with limn→∞ εn = 0, and let (xn)n≥1 denote a sequence of
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εn-minimizers. Assume that (fn)n≥1 epi-converges (resp., Mosco-converges) to f . If
some subsequence (xnk

)k≥1 converges in the norm topology (resp., in the weak topology)
to some x ∈ E, then x ∈ argmin f .

In other words if a sequence of εn-minimizers has a convergent subsequence, then the
subsequential limit is itself a minimizer of f . An elementary proof of Proposition 4.32
is given in Section 4.9.1.

Application to geometric quantiles

Next we return to the setting of empirical ℓ-quantiles introduced in Section 4.3.1. Before
diving into convergence results we state the following assumption, which controls the
degree of optimality of the minimizers as n goes to infinity.

Assumption (A4). (ϵn)n≥1 converges P∗-almost surely to 0.

As a first convergence statement we mention Kemperman’s result of asymptotic
closeness between the sets Med(µ̂n) and Med(µ) in the special case where E is finite-
dimensional. For any subset A of E and δ > 0, we let Aδ = {x ∈ E : ∃α ∈ A, ∥x−α∥ <
δ} denote the δ-fattening (also known as δ-enlargement) of A.

Theorem 4.33 (Theorem 2.24 in [148]). Suppose E is finite-dimensional. Then P∗-
almost surely:

∀δ > 0, ∃N ≥ 1,∀n ≥ N,Med(µ̂n) ⊂ Med(µ)δ.

Remark 4.34. In words, for any δ and sufficently large n, each empirical median is at
least δ-close to some true median. When E has finite dimension the weak topology co-
incides with the norm topology, hence Theorem 4.33 clearly implies with P∗-probability
1 the conclusion of Proposition 4.32: for any sequence of empirical ℓ-medians (α̂n)n≥1,
if some subsequence (α̂nk

)k≥1 converges to some α ∈ E then α is an ℓ-median of µ.
Kemperman’s result relies crucially on the compactness (w.r.t. the norm topology)
of closed balls, which is only valid in finite-dimensional spaces. As a straightforward
consequence of our results below, we obtain in Corollary 4.44 a generalization of this
theorem to ϵn-empirical ℓ-quantiles.

Remark 4.35. Kemperman’s original theorem is deterministic, in the sense that he
considers an arbitrary sequence of probability measures (µn)n≥1 that converges weakly
(in the usual sense for measures) to µ, whereas we work with the random measure µ̂n.
The result we state above is a slight generalization to the random setting.

In infinite dimension the study of empirical ℓ-quantiles is amenable to Mosco-
convergence. We show indeed the stronger statement that P-almost surely (ϕ̂n)n≥1

converges uniformly on bounded sets to ϕ. Kemperman had proved [148, Section 2.19]
in the deterministic setting (see Remark 4.35) that (ϕ̂n)n≥1 converges uniformly on
compact sets to ϕ, which is useful only when E is finite-dimensional. Our result is an
improvement in this regard.

Proposition 4.36. Assume E is separable. Then P-almost surely, the sequence of
functions (ϕ̂n)n≥1 converges uniformly on bounded sets to ϕ.
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The proofs for results in this subsection are in Section 4.9.2. We show that the sub-
set of Ω under consideration in the proposition belongs to F , so there is no measurability
hurdle here. Since uniform convergence on bounded sets implies Mosco-convergence
(see [40, Theorem 6.2.14]), Proposition 4.32 applies. By combining it with Proposi-
tion 4.36, we obtain the following convergence theorem for empirical ℓ-quantiles. It
relies on the weak topology of E, which is not metrizable or even first-countable in
general, hence the need for inner probability.

Theorem 4.37. Under Assumptions (A2) and (A4), the following statement holds P∗-
almost surely: for any sequence of ϵn-empirical ℓ-quantiles (α̂n)n≥1, if some subsequence
(α̂nk

)k≥1 converges in the weak topology of E to some α ∈ E, then α is an ℓ-quantile
of µ.

Remark 4.38. Some works in stochastic optimization have applied the theory of vari-
ational convergence to study general optimization problems in which the objective
function ϕ has the form ϕ : α 7→

∫
S
g(α, x)dµ(x) where g : E × S → R is a generic

integrand, E is a metric space and (S,S, µ) is a probability space. In references
[84, 152, 176, 116, 277] the authors assume various topological conditions on the spaces
E, S and various regularity conditions on g. Additionally they consider a sequence
of probability measures (µn)n≥1 (deterministic or random) that converges weakly to
µ, from which they obtain approximating functions ϕn : α 7→

∫
S
g(α, x)dµn(x), and

they study epi- or Mosco-convergence of ϕn to ϕ. Epi-convergence (which is weaker
than Mosco-) in the infinite-dimensional setting is proved in [116, Theorem 5.1] and
[277, Theorem 2]; both of these theorems apply to quantiles. Mosco-convergence in the
infinite-dimensional setting is established in [152, Theorem 2.4] and [176, Theorem 14];
however these results do not cover quantiles: regarding [152] the integrability condition
on the subderivative is not verified, while in [176] the authors’ Condition 4 is not met.
Consequently, to our knowledge, our theorem cannot be obtained from existing results
in the literature on variational convergence.

Remark 4.39. Theorem 4.37 does not mean that the closed convex sets ϵn-Quant(µ̂n)
converge in the usual sense to Quant(µ) (see [195, Definition 1.7.1 and Theorem 1.7.16]
for the notion of convergence). Indeed, there may be an α⋆ ∈ Quant(µ) whose distance
to ϵn-Quant(µ̂n) remains bounded away from 0.

Theorem 4.37 is a statement on weakly convergent subsequences, the existence of
which is only hypothesized. In reflexive spaces however, we show that at least one
such subsequence exists, even under a weaker convergence mode for (ϵn)n≥1, hence the
following assumptions.

Assumption (A5). E is a separable reflexive Banach space.

Assumption (A6). (ϵn)n≥1 converges in outer probability to 0.

Reflexive Banach spaces enjoy the property that closed balls are weakly compact.
In order to leverage this fact for the existence of a convergent subsequence, we need
some kind of boundedness result on ϵn-empirical ℓ-quantiles. This is the subject of the
next proposition.
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Proposition 4.40. Under Assumptions (A2) and (A4):

1. there exists R > 0 such that the following holds P∗-almost surely: for n large
enough, ϵn-Quant(µ̂n) is contained in the closed ball B̄(0, R),

2. P∗-almost surely, any sequence of ϵn-empirical ℓ-quantiles (α̂n)n≥1 is bounded in
norm, i.e., supn ∥α̂n∥ <∞.

Under Assumptions (A2) and (A6):

3. there exists R > 0 such that P∗
(
{ω ∈ Ω : ϵωn-Quant(µ̂ω

n) ⊂ B̄(0, R)}
)
−−−→
n→∞

1,

4. any sequence of ϵn-empirical ℓ-quantiles (α̂n)n≥1 is stochastically bounded, i.e.,
α̂n = OP∗(1).

Remark 4.41. As is made clear in the proof, the constant R depends only on the
measure µ. A deterministic version (see Remark 4.35) of the second item in the case of
exact empirical medians (i.e., ϵn = 0 and ℓ = 0) was noted by Kemperman [148, p.221]
and proved by Cadre [53, Lemma 2] with techniques different from ours.

By combining Theorem 4.37 and Proposition 4.40 we obtain the following corollary.

Theorem 4.42. Under Assumptions (A4) and (A5), the following holds P∗-almost
surely: for any sequence of ϵn-empirical ℓ-quantiles (α̂n)n≥1 and any of its subsequence
(α̂nk

)k≥1, there exists a further subsequence (α̂nkj
)j≥1 that converges in the weak topology

of E to some ℓ-quantile α ∈ Quant(µ).

Next, we change the convergence of (ϵn)n≥1 to convergence in outer probability. We
still obtain a P∗-almost sure statement, but it is weaker than Theorem 4.42.

Theorem 4.43. Under Assumptions (A5), (A6) the following holds P∗-almost surely:
any sequence of ϵn-empirical ℓ-quantiles (α̂n)n≥1 has a subsequence (α̂nk

)k≥1 that con-
verges in the weak topology of E to some ℓ-quantile α ∈ Quant(µ).

A direct consequence of Theorem 4.42 is the following generalization of Theo-
rem 4.33 to ϵn-empirical ℓ-quantiles.

Corollary 4.44. Suppose E is finite-dimensional and Assumption (A4) holds. Then
P∗-almost surely:

∀δ > 0,∃N ≥ 1,∀n ≥ N, ϵn-Quant(µ̂n) ⊂ Quant(µ)δ.

4.4.2 The case of a single true quantile

We turn our attention to the setting where the measure µ has a single geometric ℓ-
quantile, denoted by α⋆. This quantity is the parameter of location that we seek to
estimate using the approximate empirical ℓ-quantiles from Definition 4.20. To guar-
antee that α⋆ exists we will require Assumption (A2), or the more specific reflexivity
Assumption (A5). The following assumption is a generic placeholder to ensure unique-
ness of α⋆. It is met for example when E is strictly convex and µ is in M∼, as seen in
Proposition 4.17.
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Assumption (A7). The measure µ has at most one ℓ-quantile.

Next we state a stronger assumption that guarantees existence and uniqueness for
measures in M−, as shown in Proposition 4.19.

Assumption (A8). E is a separable, strictly convex normed space and ℓ = 0. The
measure µ is in M− and has a unique median.

A desired property for any sequence of approximate empirical ℓ-quantiles (α̂n)n≥1 is
some form of consistency, i.e., some kind of stochastic convergence of (α̂n) to α⋆. Our
setting encompasses infinite-dimensional Banach spaces, which can be equipped with
the weak, the weak∗ (when considering a dual space) or the norm topology [7, Chapter
6]. Therefore, the topology must be specified before any of the convergence modes in
Definition 4.21 is considered.

The finite-dimensional case is very special since this is precisely when the weak and
norm topologies of E coincide. The consistency of approximate empirical quantiles
in this context is well-understood: when E is finite-dimensional, Theorems 4.45, 4.54
and 4.55 established below are corollaries of general M-estimation results [132, Theorem
1; 83, Theorem 6.6; 108, Theorem 5.1; 199, Theorem 1]. The proofs in these references
crucially exploit the compactness of closed balls and spheres, which holds only in
finite-dimensional normed spaces. The reliance on compactness severely limits the
generalization of these works to infinite-dimensional Banach spaces.

Consistency in the weak topology

As a direct consequence of Theorem 4.42 we obtain a consistency result in the weak
topology when E is a separable, reflexive, strictly convex Banach space.

Theorem 4.45. Under (A4), (A5) and (A7) the following holds P∗-almost surely: any
sequence of ϵn-empirical ℓ-quantiles converges in the weak topology of E to α⋆.

Proofs for this subsection are in Section 4.9.3.

Remark 4.46. Cadre obtained by other means a similar result [53, Theorem 1 (i)] for
exact empirical medians in a deterministic setting (see Remark 4.35). His theorem
covers the case where E is equal to the dual of a separable Banach space and the case
where E is reflexive.

Remark 4.47. Gervini [100, 101] invoked Theorem 1 in Huber’s seminal work [132]
to obtain consistency in the weak topology of exact empirical medians for the space
E = L2(T ), where T is a closed interval of the real line. We show in Remark 4.88 that
the argument Gervini uses to apply [132] is incorrect. In Remark 4.89 however, we see
that Huber’s theorem is indeed applicable; this provides another proof of Theorem 4.45.

Remark 4.48. Consistency in the weak topology is useful in practice since it is equiv-
alent to convergence along linear functionals: for any f in E∗, the sequence of real
numbers (f(α̂n)) converges to f(α⋆). This topology can however be counterintuitive:
for example, if (en)n≥1 is an orthonormal basis of a separable Hilbert space, then the
sequence (en) converges weakly to 0 although these vectors have unit norm.
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Consistency in the norm topology

Consistency results for the norm topology are much closer to the statistician’s intuition,
but they are also more challenging to obtain. To establish such results, a standard
technique in M -estimation is to exploit uniform convergence of (ϕ̂n) and the following
condition on the minimizer of ϕ [259, Theorem 5.7; 261, Corollary 3.2.3 (i)].

Definition 4.49. We say that ϕ has a well-separated minimizer if it has a minimizer
α⋆ such that the inequality

ϕ(α⋆) < inf
α∈E

∥α−α⋆∥≥ϵ

ϕ(α)

holds for every ϵ > 0.

In words, if α is separated away from α⋆ then ϕ(α) cannot get arbitrarily close to
the minimum value of ϕ. We introduce an equivalent condition on the function ϕ: it
is stated in terms of sequences, and verifying it is more convenient.

Definition 4.50. A deterministic sequence (αn)n≥1 is a minimizing sequence if the
sequence of real numbers (ϕ(αn)) converges to ϕ(α⋆). The function ϕ is well-posed if
it has a unique minimizer α⋆ and if any minimizing sequence (αn)n≥1 converges in the
norm topology of E to α⋆.

The function ϕ has a well-separated minimizer if and only if it is well-posed; this
is the subject of Lemma 4.90 in Section 4.9.4. Proving that ϕ is well-posed is the key
technical hurdle before we obtain consistency results. If E is finite-dimensional and ψ is
any continuous function with a unique minimizer, then this minimizer is automatically
well-separated and ψ is well-posed. There is no such result in infinite dimension; our
specific function ϕ requires a bespoke approach and we add the following topological
assumption on the normed space E.

Assumption (A9). E has the Radon–Riesz (or Kadec–Klee) property: for any se-
quence (xn)n≥1 and any x ∈ E, if simultaneously (xn) converges weakly to x and the
sequence of real numbers (∥xn∥) converges to ∥x∥, then (xn) converges in the norm
topology to x.

By exploiting this assumption, we obtain the following proposition. Its proof is
technically challenging.

Proposition 4.51. 1. Under (A5), (A7) and (A9), the function ϕ is well-posed.

2. Assume (A8) and let L denote an affine line such that µ(L) = 1. Then any
minimizing sequence lying on L converges in the norm topology of E to α⋆.

Remark 4.52. Assumption (A7) is broad and typically fulfilled by requiring that E be
strictly convex and µ be in M∼. The second item of Proposition 4.51 covers measures
in the complementary class M−; notably it requires neither reflexivity nor the Radon–
Riesz assumption and it states a result weaker than well-posedness.
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Remark 4.53. We justify next why the Radon–Riesz assumption (A9) seems necessary
to obtain the first item of Proposition 4.51. A related minimization problem is that
of best approximation: given C a closed convex subset of E, a best approximation of
0 in C is a minimizer of the function α 7→ ∥α∥ with the constraint that α ∈ C. It is
known in the literature [265; 77, Theorem 2 p.41; 175, Theorem 10.4.6] that the best
approximation problem is well-posed for every closed convex C if and only if:

E is a reflexive, strictly convex Banach space having the Radon–Riesz property.
(4.2)

The problem of geometric medians bears some resemblance to best approximation since
the objective function ϕ0 involves the norm, and the flexibility in the choice of C is
paralleled by freedom in the choice of the measure µ. Consequently we conjecture that
well-posedness of ϕ0 for every µ ∈ M∼ is equivalent to (4.2). That (4.2) is sufficient
follows from Proposition 4.51. Regarding necessity, we obtained strict convexity in the
third item of Proposition 4.17; proving reflexivity and the Radon–Riesz property is an
open problem.

In addition to well-posedness of ϕ, the sequence (ϕ̂n) converges uniformly on bounded
sets to ϕ with P-probability 1 by Proposition 4.36. We can therefore adapt the M -
estimation technique described above and obtain the following consistency results in
the norm topology.

Theorem 4.54. Under (A4), (A5), (A7), (A9) the following holds P∗-almost surely:
any sequence of ϵn-empirical ℓ-quantiles converges in the norm topology to α⋆.

Theorem 4.55. Assume (A6), (A5), (A7), (A9). Any sequence (α̂n)n≥1 of ϵn-empirical
ℓ-quantiles converges in outer probability to α⋆, i.e.,

∀δ > 0, P∗(∥α̂n − α⋆∥ > δ) −−−→
n→∞

0.

Remark 4.56. As in the M-estimation reference [132], the convergence mode of (ϵn) in
each theorem is reflected in the convergence mode obtained for approximate empirical
quantiles.

Next, we formulate consistency for measures in M−: the reflexivity and Radon–
Riesz assumptions can be replaced with strict convexity (which implies neither of the
previous two), however the precision ϵn must be set to 0.

Proposition 4.57. The conclusions of Theorems 4.54 and 4.55 also hold under the
combined assumptions ϵn = 0 and (A8).

Uniformly convex spaces (see Definition 4.15) are reflexive, strictly convex and they
verify the Radon–Riesz property. As a consequence we obtain the following explicit
list of spaces where the two previous consistency theorems hold.

Corollary 4.58. Let µ ∈ M∼. Under Assumption (A4) (resp., (A6)), the conclusion
of Theorem 4.54 (resp., 4.55) holds in any separable, uniformly convex Banach space,
hence in any of the following spaces (each space is viewed as a real vector space, see
Corollary 4.12):
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1. E is finite-dimensional and strictly convex.

2. E is a separable Hilbert space equipped with its Hilbert norm,

3. E = Lp(S,A, ν) equipped with the Lp norm, where 1 < p < ∞, (S,A, ν) is a
sigma-finite measure space and A is countably generated. This includes the case
where (S,A) is a separable metric space with its Borel sigma-algebra and the case
where (S,A) is a countable space with its discrete sigma-algebra.

4. E = W k,p(Ω) as in Corollary 4.12,

5. E = Sp(H) as in Corollary 4.12 and H is separable.

The same statement holds for µ ∈ M−, if we assume additionally that µ has a unique
ℓ-quantile.

Next we compare our results to those in the literature. Since geometric quantiles
fit the framework of convex M -estimation, the following consistency result is already
known and it holds when E is finite-dimensional.

Lemma 4.59 ([199, Theorem 1]). Assume µ ∈ M∼, E = Rd, d ≥ 2, equipped with
the Euclidean norm and ϵn = 0. Given (α̂n)n≥1 a sequence of measurable selections,
we have

P(∥α̂n − α⋆∥ −−−→
n→∞

0) = 1.

Note that our Corollary 4.58 recovers this statement, with no additional assumption.
To our knowledge, the only preexisting consistency result in the norm topology for

infinite-dimensional spaces is Theorem 4.2.2 in Chakraborty and Chaudhuri [64]. They
state an almost-sure consistency theorem for exact empirical medians (ℓ = 0, ϵn = 0)
in separable Hilbert spaces. Their statement covers measures in M∼ verifying two
additional assumptions on which we comment below:

E[∥X − α⋆∥−1] <∞ and E[∥X∥2] <∞, (4.3)

where X is a random element with distribution µ. Their proof exploits properties of the
Hessian of ϕ0 to obtain the almost-sure inequality ϕ0(α̂n)− ϕ0(α⋆) ≥ c

2
∥α̂n − α⋆∥2 for

a positive constant c and large enough n. The conclusion then follows since ϕ0(α̂n) →
ϕ0(α⋆). For the Hessian at α⋆ to exist, the condition E[∥X − α⋆∥−1] < ∞ must be
satisfied. It is restrictive, since it implies 0 = P(X = α⋆) = µ({α⋆}) and additionally
µ cannot put too much mass around α⋆. Furthermore, Chakraborty and Chaudhuri
leverage a key property of the Hessian that is found in Proposition 2.1 of Cardot,
Cénac and Zitt [57], which requires additionally the moment condition E[∥X∥2] < ∞
(we dedicate a paragraph on the next page to a further detailed assessment of [57,
Proposition 2.1]). Unlike [64], because we do not rely on first- or second-order methods,
our Theorems 4.54 and 4.55 are free from the extra distributional assumptions (4.3).
Moreover, our theorems match exactly the minimal assumptions needed for consistency
in the finite-dimensional setting, as seen in Lemma 4.59.
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Besides, the authors of [57] crucially rely on the Hilbert structure to obtain their
equality (6), which plays a key role in the proof of [57, Proposition 2.1] (and by exten-
sion, in the proof of [64, Theorem 4.2.2]). Chakraborty and Chaudhuri argue [64, p.38]
that their proof technique extends to other Banach spaces by applying Proposition 1
in Asplund [13] with f = ϕ, a = 0, b = α⋆. They claim that the third clause of [13,
Proposition 1] is true by [13, Theorem 3]. This reasoning is correct as long as the set
G in Asplund’s Theorem 3 contains 0, however this theorem has no such guarantee.

Our Theorems 4.54 and 4.55 hold for ℓ ̸= 0 and ϵn ̸= 0, in a large variety of Banach
space. They do not require the distributional assumptions (4.3) and they match the
assumptions needed for consistency in finite dimension. Therefore, they are a significant
improvement on the existing literature.

Detailed assessment of [57, Proposition 2.1] The proof of Proposition 2.1 in [57]
is quite terse; as we have spent quite some time figuring out the details when reading
this paper, we deem it worthwile to provide an extended proof here.

Proof. We begin by repeating one of the key assumptions.

Assumption (A10). For every v ∈ E, there exists some w ∈ E satisfying both
⟨w, v⟩ = 0 and V[⟨w,X⟩] = 0.

Let S = {K ⊂ E : K is a linear subspace and for every x ∈ K, ⟨x,X⟩ is a.s. constant}.
Note that S is partially ordered by inclusion and if R is a chain in S, then

⋃
K∈RK is

in S and it is an upper bound of R. By Zorn’s lemma, S has a maximal element, say
F ∈ S.

We show that F is closed: let (xn)n≥1 denote a sequence in F that converges to
some x ∈ E. For each n ≥ 1, there exists an almost-sure event Ωn and a constant cn
such that ⟨xn, X⟩ = cn on Ωn. Since ⟨x,X⟩ = limn⟨xn, X⟩, by considering the almost-
sure event ∩n≥1Ωn, we obtain that (cn)n≥1 converges to some c ∈ R and ⟨x,X⟩ = c
with probability 1, thus x ∈ F .

Next, we see that dim(F⊥) ≥ 2. If dim(F⊥) = 0, then since F is closed we
have F = E and for every x ∈ E, the random variable ⟨x,X⟩ is a.s. constant which
contradicts Assumption (A10). If dim(F⊥) = 1 there exists v ̸= 0 such that F⊥ = Rv.
By Assumption (A10), there is some w ∈ (Rv)⊥ = F such that ⟨w,X⟩ is not a.s.
constant. This is in contradiction with F ∈ S.

Consider v1, v2 orthonormal vectors in F⊥ and the mapping

ϕ : [0, 2π] → R
t 7→ V[⟨cos(t)v1 + sin(t)v2, X⟩],

which reaches a minimum at some t0. Assuming ϕ(t0) = 0 and letting z = cos(t0)v1 +
sin(t0)v2, we have z ∈ F⊥ \ {0}, thus F ⊕ (Rz) is in S and contradicts the maximality
of F . Consequently ϕ(t0) is positive.

Fix some arbitrary vector u ∈ E with unit norm for the rest of the proof. Elemen-
tary linear algebra shows that (Ru)⊥ ∩ span(v1, v2) ̸= {0}; let v denote a unit vector
in this intersection. Since Ru ⊂ (Rv)⊥ we have PvPu = 0, i.e., Pv = PvPu⊥ , hence
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for every y ∈ E the following inequality holds ∥Pvy∥ ≤ ∥Pu⊥y∥, which rewrites as
⟨y, v⟩2 ≤ ∥Pu⊥y∥2.

For any K > 0 we obtain the following estimate:

E
[∥Pu⊥(X − α)∥2

∥X − α∥3
]
≥ E

[⟨X − α, v⟩2
∥X − α∥3

]
≥ E

[⟨X − α, v⟩2
(K + A)3

1∥X∥≤K

]
≥ V[⟨X − α, v⟩]

(K + A)3
− E

[
∥X − α∥21∥X∥>K

]
(K + A)3

≥ ϕ(t0)

(K + A)3
− 2

(K + A)3
E
[
(∥X∥2 + A2)1∥X∥>K

]
.

This lower bound is asymptotically ∼ ϕ(t0)
K3 as K → ∞, hence it is possible to choose

K so large (and independent of α) in order that the lower bound be positive.

While the definition of S and F does not require the moment assumption E[∥X∥2] <
∞, it seems inescapable that such an assumption is needed in the rest of the proof.

4.5 Asymptotic normality of approximate empirical
quantiles

In the preceding section, approximate empirical quantiles were shown to converge in
the norm topology to the true ℓ-quantile α⋆ under mild assumptions on the space E,
the measure µ and the precision ϵn. In order to perform more advanced inference
on α⋆ (e.g., developing confidence regions and hypothesis testing), it is necessary to
determine the asymptotic distribution of these estimates.

When E is a Euclidean space, M-estimation results based on empirical processes
[259, Theorem 5.23; 261, Example 3.2.22] yield a linear representation for

√
n(α̂n−α⋆),

from which the asymptotic normality of α̂n follows. We identify the functional ℓ with
the corresponding element of Rd.

Theorem 4.60. Assume that (i) E is a d-dimensional Euclidean space with d ≥ 2,
(ii) the moment condition E[∥X−α⋆∥−1] <∞ holds, (iii) µ is in M∼ and (iv) ϵn = oP(1/n).
Let α̂n be a measurable selection from ϵn-Quant(µ̂n) for each n ≥ 1 and let H, V be
d× d symmetric matrices defined by

H = E
[
1X ̸=α⋆

1

∥α⋆ −X∥
(
Id −

(α⋆ −X)(α⋆ −X)⊤

∥α⋆ −X∥2
)]
,

V = E
[
1X ̸=α⋆

( α⋆ −X

∥α⋆ −X∥ − ℓ
)( α⋆ −X

∥α⋆ −X∥ − ℓ
)⊤]

.

Then H is positive-definite and

√
n(α̂n − α⋆) = −H−1 1√

n

n∑
i=1

(
1Xi ̸=α⋆

α⋆ −Xi

∥α⋆ −Xi∥
− ℓ
)
+ oP(1). (4.4)
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As a consequence,
√
n(α̂n − α⋆) converges in distribution to the multivariate normal

Nd(0, H
−1V H−1).

The moment assumption (ii) ensures that the function α 7→ ∥α − x∥ − ∥x∥ is
differentiable at α⋆ for µ-almost every x, that H is well-defined and that ϕ has the
second-order Taylor expansion ϕ(α⋆+h) = ϕ(α⋆)+

1
2
h⊤Hh+o(∥h∥2). Assumption (iii)

guarantees not only that µ has a unique ℓ-quantile, but also that H is invertible. These
facts combined with assumption (iv) warrant the application of [259, Theorem 5.23],
from which Theorem 4.60 is obtained. The proof of this theorem in [259] relies crucially
on bounding the L2(µ) bracketing number of the function class Fδ = {φα − φα⋆ :
∥α− α⋆∥ ≤ δ} as follows:

N[ ](η,Fδ, L2(µ)) ≤ C
(δ
η

)d
for every η ∈ (0, δ),

where φα denotes the function x 7→ ∥α − x∥ − ∥x∥, δ is a positive real and C is a
constant depending only on d and δ. That the dimension d appears in the right-hand
side stems from standard volumetric arguments, which do not generalize to the infinite-
dimensional case. Other M-estimation works [108, Theorem 6.1; 199, Theorem 4; 119,
Theorem 2.1] that leverage convexity reach a weaker conclusion, namely the asymptotic
normality of exact empirical ℓ-quantiles (i.e., when ϵn = 0). The proofs in these works
rely critically on the compactness of closed balls and spheres in the norm topology,
which is characteristic of the finite-dimensional setting.

Theorem 4.60 will serve as a benchmark when we establish normality results that
encompass infinite-dimensional spaces.

4.5.1 Asymptotic normality in Hilbert spaces

In this subsection E is a real separable Hilbert space with inner product ⟨·, ·⟩ and µ
is in M∼. By the Riesz representation theorem, there is a unique vector l ∈ E such
that ℓ coincides with the functional α 7→ ⟨l, α⟩. Troughout we will identify l with ℓ
and write ⟨ℓ, α⟩ for convenience. As an example,

ϕℓ(α) = ϕ0(α)− ⟨ℓ, α⟩ for every α ∈ E.

By Corollary 4.18, µ has a unique geometric median α⋆.

Preliminaries

For convenience we will sometimes denote by N the norm function: N(α) = ∥α∥ =
⟨α, α⟩1/2. We will leverage derivatives of N and ϕ, hence the following refresher for
gradients and Hessians in Hilbert spaces.

Definition 4.61. Let f : E → R and α ∈ E.

1. If f is Fréchet differentiable at α, the gradient of f at α is the unique element of E
denoted by ∇f(α) such that the Fréchet derivative Df(α) is the linear functional
h 7→ ⟨∇f(α), h⟩.
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2. If f is twice Fréchet differentiable at α, the Hessian of f at α is the unique
bounded operator denoted by ∇2f(α) such that the second-order Fréchet deriva-
tive D2f(α) verifies

D2f(α)(h1, h2) = ⟨∇2f(α)h1, h2⟩ for every (h1, h2) ∈ E2.

By elementary differential calculus, the norm N is infinitely differentiable at each
nonzero α ∈ E with gradient and Hessian given by

∇N(α) =
α

∥α∥ ∇2N(α) =
1

∥α∥
(
Id−α⊗ α

∥α∥2
)
, (4.5)

where Id is the identity operator and α ⊗ α denotes the operator u 7→ ⟨u, α⟩α. The
following lemma gives explicit error bounds for the second-order (resp., first-order)
Taylor approximation of N (resp., ∇N). We let a ∧ b denote the minimum of the real
numbers a and b.

Lemma 4.62. For any α ∈ E \ {0} and any h ∈ E the following inequality holds:∣∣∣∥α + h∥ − ∥α∥ − ⟨∇N(α), h⟩ − 1

2
⟨∇2N(α)h, h⟩

∣∣∣ ≤ 1

2

(∥h∥2
∥α∥ ∧ ∥h∥3

∥α∥2
)
. (4.6)

Assuming additionally that α + h is nonzero,

∥∇N(α + h)−∇N(α)−∇2N(α)h∥ ≤ 2
(∥h∥
∥α∥ ∧ ∥h∥2

∥α∥2
)
. (4.7)

Proofs for this subsection are in Section 4.10.1.

Remark 4.63. In the case of linear dependence where h = λα with λ ∈ R and ∥α∥ = 1,
the inequalities rewrite as statements involving only λ (with λ ̸= −1 in the second):

∣∣|1 + λ| − 1− λ
∣∣ ≤ 1

2
(λ2 ∧ |λ|3) and

∣∣∣∣ 1 + λ

|1 + λ| − 1

∣∣∣∣ ≤ 2(|λ| ∧ λ2). (4.8)

It is easily seen that the constants 1/2 and 2 in the right-hand sides of (4.8) are sharp,
hence they are also optimal in inequalities (4.6) and (4.7). Remarkably, these constants
are independent of the Hilbert space E.

By combining Equation (4.5) and Lemma 4.62 we obtain differentiability properties
of the objective function ϕ. We say that α ∈ E is an atom of the measure µ if
µ({α}) > 0.

Proposition 4.64. Let α ∈ E.

1. ϕ is Fréchet differentiable at α if and only if α is not an atom of µ. In that case,
the gradient of ϕ is given by

∇ϕ(α) = E
[
1X ̸=α

α−X

∥α−X∥

]
− ℓ. (4.9)
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2. Assume that E[∥X − α∥−1] <∞. Then the operator on E

H = E
[
1X ̸=α

1

∥α−X∥
(
Id−(α−X)⊗ (α−X)

∥α−X∥2
)]

(4.10)

is well-defined, bounded, self-adjoint and nonnegative, i.e.,

⟨Hh1, h2⟩ = ⟨h1, Hh2⟩ and ⟨Hh1, h1⟩ ≥ 0 for every (h1, h2) ∈ E2.

Moreover the following second-order Taylor expansion holds:

ϕ(α + h) = ϕ(α) + ⟨∇ϕ(α), h⟩+ 1
2
⟨Hh, h⟩+ o(∥h∥2).

3. Under the additional assumption that µ is in M∼, the operator H is invertible,
its inverse is bounded, self-adjoint, nonnegative and inf∥h∥=1⟨Hh, h⟩ > 0.

4. Assume that E[∥X − α∥−1] < ∞ and α has a neighborhood without any atom.
Then ϕ is twice Fréchet differentiable at α with Hessian ∇2ϕ(α) = H.

Remark 4.65. Expliciting ∇ϕ(α) and H requires integrating functions with values re-
spectively in the Hilbert space E and the Banach space B(E) of bounded operators on
E (equipped with the operator norm). The expectations in (4.9) and (4.10) are under-
stood as Bochner integrals (see, e.g., [75, Section II.2]). Since B(E) is not separable
when E is infinite-dimensional, there are measurability issues that we address in the
proof of Proposition 4.64.
Remark 4.66. Cardot, Cénac and Zitt [57] also obtain by other means that H is in-
vertible and inf∥h∥=1⟨Hh, h⟩ > 0. However their proof requires the extra assumption
E[∥X∥2] <∞.

Remark 4.67. The quantity E
[
1X ̸=α

α−X
∥α−X∥

]
− ℓ is always well-defined, regardless of the

differentiability of ϕ at α. In fact, it is a subgradient of the convex function ϕ at α. For
convenience, we will use the notation ∇ϕ(α) as a shorthand instead, even when ϕ is not
differentiable. Similarly, the operator H is well-defined as soon as E[∥X − α∥−1] <∞.
When this condition is met we will write ∇2ϕ(α) to denote the aforementioned operator,
even when ϕ need not be twice differentiable.

Weak Bahadur–Kiefer representations and asymptotic normality

Given (α̂n) a sequence of ϵn-empirical ℓ-quantiles, we wish to establish convergence in
distribution of the sequence (

√
n(α̂n − α⋆)). For each n ≥ 1, we note that α̂n is an

ϵn-minimizer of the empirical objective function ϕ̂n if and only if
√
n(α̂n − α⋆) is an

ϵn-minimizer of the function ψ̂n defined next. We will derive limiting statements on√
n(α̂n − α⋆) by approximating ψ̂n with a quadratic function Ψ̂n that resembles the

second-order Taylor expansion of ψ̂n.

Definition 4.68. We let ψ̂n denote the shifted and rescaled empirical objective func-
tion

ψ̂n : β 7→ ϕ̂n

(
α⋆ +

β√
n

)
and we define the quadratic function

Ψ̂n : β 7→ ϕ̂n(α⋆) + ⟨∇ϕ̂n(α⋆),
β√
n
⟩+ 1

2
⟨∇2ϕ(α⋆)

β√
n
, β√

n
⟩.
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Remark 4.69. In Definition 4.68, the abuse of notation described in Remark 4.67 occurs
when we write ∇2ϕ(α⋆). The following analogous abuse is performed here and later:

∇ϕ̂n(α) =
1
n

∑n
i=1(1Xi ̸=α

α−Xi

∥α−Xi∥ − ℓ),

∇2ϕ̂n(α) =
1
n

∑n
i=1 1Xi ̸=α

1
∥α−Xi∥

(
Id− (α−Xi)⊗(α−Xi)

∥α−Xi∥2
)
.

Note that ∇ϕ̂n(α) is always a subgradient of ϕ̂n at α, regardless of the differentiability
of ϕ̂n.

The quadratic function Ψ̂n has a unique minimizer β̂n which is easy to write in
closed form: β̂n = −√

n[∇2ϕ(α⋆)
−1]∇ϕ̂n(α⋆). By the central limit theorem for Hilbert

spaces, (β̂n)n≥1 converges in distribution to a Gaussian measure (see, e.g., [161, Section
I.2] for Gaussian measures on Hilbert spaces and [168, Chapter 10] for central limit
theorems). This is part of the following proposition.

Proposition 4.70. Assume that E[∥X − α⋆∥−1] <∞ and µ ∈ M∼.

1. For each n ≥ 1, the function Ψ̂n is convex, with unique minimizer

β̂n = −√
n[∇2ϕ(α⋆)

−1]∇ϕ̂n(α⋆).

2. The sequence (β̂n)n≥1 converges in distribution to the centered Gaussian measure
with covariance operator ∇2ϕ(α⋆)

−1E
[
1X ̸=α⋆(

α⋆−X
∥α⋆−X∥ − ℓ)⊗ ( α⋆−X

∥α⋆−X∥ − ℓ)
]
∇2ϕ(α⋆)

−1.

As a consequence, β̂n = OP(1).

3. Letting κ = inf∥h∥=1⟨∇2ϕ(α⋆)h, h⟩, Ψ̂n is κ
n
-strongly convex and the following

bound holds:

Ψ̂n(β) ≥ Ψ̂n(β̂n) +
κ

2n
∥β − β̂n∥2 for every β ∈ E.

Proofs for this subsection are in Section 4.10.2
The next proposition shows that the quadratic function Ψ̂n is uniformly close to ψ̂n

on bounded sets.

Proposition 4.71. Let R > 0 be fixed.

1. Assuming E[∥X − α⋆∥−1] < ∞, the random sequence (n · sup∥β∥≤R |ψ̂n(β) −
Ψ̂n(β)|)n≥1 converge P-almost surely to 0, hence

sup
∥β∥≤R

|ψ̂n(β)− Ψ̂n(β)| = oP(n
−1).

2. Assuming E[∥X − α⋆∥−2] <∞, we have

sup
∥β∥≤R

|ψ̂n(β)− Ψ̂n(β)| = OP(n
−3/2).

and
sup

∥β∥≤R

|∇ψ̂n(β)−∇Ψ̂n(β)| = OP(n
−3/2).
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Remark 4.72. When E[∥X−α⋆∥−2] <∞ we obtain the tigher bound OP(n
−3/2) instead

of oP(n−1). This second moment assumption is crucial in the proof because we apply
the central limit theorem to the random variable 1Xi ̸=α⋆∥Xi − α⋆∥−1 and to the random
element 1Xi ̸=α⋆

(α⋆−Xi)⊗(α⋆−Xi)
∥Xi−α⋆∥3 which takes values in the Hilbert space S2(E) of Hilbert–

Schmidt operators.

Since the convex functions ψ̂n and Ψ̂n are close, it is expected that approximate
minimizers of ψ̂n are close to β̂n. The next theorem formalizes this idea. We obtain
linear representations similar to (4.4), which we call weak Bahadur–Kiefer representa-
tions (see Remark 4.74 below). The first representation is sufficient to derive asymp-
totic normality later. With stronger assumptions we obtain two substantially refined
representations.

Theorem 4.73. Assume µ ∈ M∼ and let (α̂n)n≥1 denote a sequence of ϵn-empirical
ℓ-quantiles.

1. If E[∥X − α⋆∥−1] <∞ and ϵn = oP∗(n−1), we have
√
n(α̂n − α⋆) = β̂n + oP∗(1).

2. If E[∥X − α⋆∥−2] <∞ and ϵn = oP∗(n−3/2), we have
√
n(α̂n − α⋆) = β̂n +OP∗(n−1/4).

3. If E[∥X − α⋆∥−2] <∞ and ϵn = oP∗(n−2), we have
√
n(α̂n − α⋆) = β̂n +OP∗(n−1/2).

Remark 4.74. The idea of approaching ψ̂n by a quadratic function and then leveraging
the closeness of minimizers is not new. Niemiro used it in [199] to derive Bahadur–
Kiefer representations for a wide range of M -estimators (see [16, 150] for the seminal
works of Bahadur and Kiefer on one-dimensional quantiles). When applied to geometric
quantiles, Niemiro’s Theorem 5 yields the representation

P
(√

n(α̂n − α⋆) = β̂n +O
(
n−(1+s)/4(log n)1/2(log log n)(1+s)/4

))
= 1

for any s ∈ [0, 1) under the following assumptions: E = Rd with d ≥ 2, ϵn = 0,
µ ∈ M∼, µ has a neighborhood of α⋆ without any atom and E[∥X − α⋆∥−2] < ∞.
Sharper representations were obtained in later works [155, 65, 11]. The sharpest is
given by Arcones in [11, Proposition 4.1] where he obtains

P
(√

n(α̂n − α⋆) = β̂n +O
(
n−1/2 log log n

))
= 1

with the additional assumption (relative to Niemiro) that ∇ϕ has a second-order Taylor
expansion. Arcones further derives a law of the iterated logarithm which shows that the
rate O

(
n−1/2 log log n

)
cannot be improved upon. The proofs in the aforementioned

references all rely crucially on E being finite-dimensional (essentially to ensure that
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closed balls and spheres are compact in the norm topology, or to exploit results from
empirical process theory) and there is a major technical hurdle in generalizing their
techniques to the infinite-dimensional setting.

In comparison, our estimate OP∗(n−1/2) has the correct order and it holds in infi-
nite dimension under assumptions less stringent than those of Niemiro and Arcones.
However our representation is weaker, in the sense that it is not almost sure.
Remark 4.75. Chakraborty and Chaudhuri [63] consider a different estimator of the
population geometric quantile. In a separable Hilbert space with orthonormal basis
(en)n≥1, they define the nested finite-dimensional subspaces Zn = span(e1, . . . , ed(n))
where (d(n))n≥1 is a sequence of positive integers. For fixed n ≥ 1, the data is pro-
jected orthogonally on Zn and the linear functional ℓ is projected orthogonally on the
corresponding subspace of the dual, thus defining the transformed data X(n)

1 , . . . , X
(n)
n

and functional ℓ(n). Their estimator α̃n is then defined as a minimizer of

α 7→ 1

n

n∑
i=1

(∥α−X
(n)
i ∥ − ∥X(n)

i ∥)− ℓ(n)(α)

over the d(n)-dimensional subspace Zn. By projecting the random element X on Zn,
they also define a population quantity α(n)

⋆ as a minimizer of

α 7→ E[∥α−X(n)∥ − ∥X(n)∥]− ℓ(n)(α)

over Zn. In [63, Theorem 3.3] they develop a Bahadur–Kiefer representation for the
quantity

√
n(α̃n − α

(n)
⋆ ) and later obtain as a consequence the asymptotic normality

of their estimator α̃n. In the proofs Chakraborty and Chaudhuri rely crucially on the
finite dimensionality of the Zn, thus their work is not applicable to our estimator α̂n.
Remark 4.76. In Theorem 4.73, the second item is obtained by combining the estimate
sup∥β∥≤R |ψ̂n(β) − Ψ̂n(β)| = OP(n

−3/2) with the (κ/n)-strong convexity of Ψ̂n. In the
third item we only use closeness of the gradients: sup∥β∥≤R |∇ψ̂n(β) − ∇Ψ̂n(β)| =

OP(n
−3/2), which allows us to improve the bound on

√
n(α̂n−α⋆)− β̂n from OP∗(n−1/4)

to OP∗(n−1/2). In exchange however, we must put an additional constraint on the
precision ϵn.

A consequence of Theorem 4.73 is the asymptotic normality of α̂n.

Theorem 4.77. Assume µ ∈ M∼, E[∥X − α⋆∥−1] < ∞ and ϵn = oP∗(n−1). For any
sequence (α̂n)n≥1 of ϵn-empirical ℓ-quantiles,

√
n(α̂n − α⋆) converges in distribution to

the centered Gaussian measure with covariance operator

Σ = ∇2ϕ(α⋆)
−1E

[
1X ̸=α⋆(

α⋆−X
∥α⋆−X∥ − ℓ)⊗ ( α⋆−X

∥α⋆−X∥ − ℓ)
]
∇2ϕ(α⋆)

−1.

Remark 4.78. The functions α̂n : Ω → E may not be measurable, as discussed in
Section 4.3.2. To make sense of the convergence in Theorem 4.77, we adopt the theory
developed by Van der Vaart and Wellner [261, Chapter 1.3]: letting γ denote the
aforementioned Gaussian measure, for any continuous and bounded function f : E → R
the following convergence of outer expectations holds: E∗[f(√n(α̂n − α⋆)

)]
−−−→
n→∞∫

E
f(x)dγ(x).

131



CHAPTER 4. GEOMETRIC QUANTILES IN INFINITE DIMENSION

Remark 4.79. If E is finite-dimensional, Theorem 4.77 reduces exactly to Van der
Vaart’s result stated in Theorem 4.60.

Remark 4.80. The only normality result in infinite dimension that we are aware of
is [100, Theorem 6]. Gervini considers L2 spaces and associates to the measure µ a
stochastic process X. The normality result is stated for exact medians (ℓ = 0, ϵn = 0),
under the assumption that the Karhunen–Loève decomposition of X has only a finite
number of summands. In contrast, our normality Theorem 4.77 is valid in a generic
separable Hilbert space, and under minimal distributional assumptions that match
those of the finite-dimensional case.

4.5.2 In other Banach spaces

In Corollary 4.58 we gave a list of Banach spaces where approximate empirical ℓ-
quantiles are consistent in the norm topology. Among these spaces, Theorem 4.77
indicates that asymptotic normality holds in L2(S,A, ν), W k,2(Ω) and S2(H) since
they are separable Hilbert spaces.

In the rest of this subsection we justify why the technique used in Section 4.5.1
(i.e., approximation with the quadratic function Ψ̂n) fails to provide normality in the
spaces

Lp(S,A, ν), W k,p(Ω), Sp(H) with p > 2. (4.11)

We consider a general separable Banach space (E, ∥·∥) such that its norm (which we
write alternatively as N) is twice Fréchet differentiable on E \{0}. This is not a strong
assumption since it is known to be satisfied for each Lp(S,A, ν) when p ≥ 2 (see [246,
Section 2.2]). We let ⟨·, ·⟩ denotes the duality pairing: given f ∈ E∗ and α ∈ E,
⟨f, α⟩ = f(α). The quadratic function Ψ̂n is defined as

Ψ̂n : β 7→ ϕ̂n(α⋆) + ⟨ 1
n

∑n
i=1

(
1Xi ̸=α⋆DN(α⋆ −Xi)− ℓ

)
, β√

n
⟩

+ 1
2
E[1X ̸=α⋆D

2N(α⋆ −X)]( β√
n
, β√

n
).

(4.12)

For fixed x ∈ E, D2N(α⋆−x) is a bounded symmetric bilinear form (see [59, Theorem
5.1.1]) and it is nonnegative because N is convex. Here, for the sake of the argument,
we disregard measurability and integrability concerns related to the Bochner integral
that appears in (4.12). The Fréchet derivative of Ψ̂n at β is the linear functional

DΨ̂n(β) =
1

n3/2

n∑
i=1

(
1Xi ̸=α⋆DN(α⋆ −Xi)− ℓ

)
+

1

n
E[1X ̸=α⋆D

2N(α⋆ −X)](β, ·).

We define the operator T : E → E∗ such that Tβ = E[1X ̸=α⋆D
2N(α⋆ −X)](β, ·) and

it is easily seen that T is bounded, ⟨Tβ1, β2⟩ = ⟨Tβ2, β1⟩ and ⟨Tβ, β⟩ ≥ 0. Since Ψ̂n is
convex, β is a minimizer of Ψ̂n if and only if

Tβ = − 1√
n

n∑
i=1

(
1Xi ̸=α⋆DN(α⋆ −Xi)− ℓ

)
.
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To identify a unique minimizer β̂n and apply the central limit theorem as in Sec-
tion 4.5.1, we need T to be a bijection. Furthermore, it was crucial in the proofs
that κ = inf∥h∥=1⟨Th, h⟩ be positive. Assuming these properties of T hold, we define
the bilinear form [·, ·] by [β1, β2] = ⟨Tβ1, β2⟩. It is symmetric and positive definite by
assumption. We write ∥·∥T for the associated norm and we note that

κ∥β∥ ≤ ∥β∥T ≤ ∥T∥op∥β∥,

hence (E, ∥·∥T ) is complete and the identity operator is a linear isomorphism between
(E, ∥·∥) and the Hilbert space (E, ∥·∥T ). Hilbert spaces have Rademacher cotype 2
(see [168, Section 9.2] for the definition). Since the cotype is isomorphic invariant [6,
Remark 6.2.11 (f)], the space (E, ∥·∥) has cotype 2 as well. It is known however that
the best possible cotype for spaces in (4.11) is p (see [168] and [178]), which is > 2.
We have reached an absurdity, this is why the approximation technique with Ψ̂n is
unsuccessful in these spaces.

By [168, Theorem 10.7], for each space in (4.11) we can find a mean-zero Borel
probability measure ν with finite second moment that does not satisfy the central limit
theorem: if (Yn)n≥1 is a sequence of i.i.d. Borel random elements with distribution ν,
the sequence (n−1/2

∑n
i=1 Yi) does not converge in distribution. This suggests that, in

these spaces, approximate empirical quantiles may not converge at the parametric rate
n1/2.

4.6 Concluding remarks
A natural question is whether one can develop a general theory of M -estimation in
infinite dimension, or a minima whether our work can be transposed to other M -
parameters. We list key technical ingredients of this chapter, the proofs of which were
quantiles-specific:

• Proposition 4.36 on uniform convergence of (ϕ̂n) to ϕ over bounded sets,

• Proposition 4.40 on asymptotic boundedness of the estimator,

• Proposition 4.51 on well-posedness of ϕ,

• Lemma 4.62 on errors bounds for the Taylor expansion of the norm.

Extending our work to other parameters requires either new approaches, or an adap-
tation of these points.

Other directions for future research include: showing almost-sure Bahadur–Kiefer
representations, deriving the exact rate of convergence of the estimator in Banach
spaces such as Lp(S,A, ν), W k,p(Ω), Sp(H) for p ̸= 2, and investigating nonasymptotic
properties (e.g., concentration bounds).
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4.7 Proofs for Section 4.2

4.7.1 Proofs for Section 4.2.1

Proof of Proposition 4.2. 1. Given α ∈ E, the reverse triangle inequality yields inte-
grability of x 7→ ∥α− x∥ − ∥x∥, hence ϕℓ is well-defined. Furthermore,

∀(α1, α2) ∈ E2, |ϕℓ(α1)− ϕℓ(α2)| =
∫
E

(∥α1 − x∥ − ∥α2 − x∥)dµ(x)− ℓ(α1 − α2)

≤ (1 + ∥ℓ∥∗)∥α1 − α2∥.

Convexity of ϕ0 is a consequence of the standard triangle inequality, hence ϕℓ is convex
as well.

2. We adapt Valadier’s proof [253]. Let (αn)n≥1 be a sequence of nonzero vectors
such that ∥αn∥ → ∞. Note that∣∣∣ϕ0(αn)

∥αn∥
−1
∣∣∣ = ∣∣∣ ∫

E

∥αn − x∥ − ∥x∥ − ∥αn∥
∥αn∥

dµ(x)
∣∣∣ ≤ ∫

E

|∥αn − x∥ − ∥x∥ − ∥αn∥
∣∣

∥αn∥
dµ(x)

and for each x ∈ E,
∣∣∥αn − x∥ − ∥x∥ − ∥αn∥

∣∣/∥αn∥ is less than 2min(∥x∥/∥αn∥, 1)
which is bounded by 2 and converges pointwise to 0. By the dominated convergence
theorem ϕ0(αn)

∥αn∥ →n 1, hence the claim. As a consequence, ϕ0(α)
∥α∥ − ∥ℓ∥∗ is no less than

(1− ∥ℓ∥∗)/2 when ∥α∥ is large enough, and in that case we have the estimate

ϕℓ(α) ≥ ∥α∥
(ϕ0(α)

∥α∥ − ∥ℓ∥∗
)
≥ 1− ∥ℓ∥∗

2
∥α∥,

hence lim∥α∥→∞ ϕℓ(α) = ∞.
3. By the second item, there is some r ≥ 0 such that ∥α∥ ≥ r =⇒ ϕℓ(α) ≥ 0.

From Lipschitzness and ϕℓ(0) = 0, it follows that ∥α∥ ≤ r =⇒ |ϕℓ(α)| ≤ (1 + ∥ℓ∥∗)r,
hence ϕℓ(α) ≥ −(1 + ∥ℓ∥∗)r for every α ∈ E.

4.7.2 Proofs for Section 4.2.2

Proof of Proposition 4.5. 1. Since limα→−∞ FX(α) = 0 and limα→∞ FX(α) = 1, M1

is nonempty and bounded below, so it has an infimum inf(M1). Let (αn)n≥1 be a
nonincreasing sequence of elements ofM1 which converges to inf(M1). Since FX is right-
continuous and αn ∈ M1, we have FX(inf(M1)) ≥ p, hence inf(M1) ∈ M1 and inf(M1)
is actually the minimal element of M1. Since FX is nondecreasing, any α ≥ min(M1)
is an element of M1, hence M1 = [min(M1),∞).

Since α ∈ M2 ⇐⇒ P(−X ≤ −α) ≥ 1 − p, by replacing X with −X and
using the result we just proved on M1, we see that M2 has a maximal element and
M2 = (−∞,max(M2)].

2. Let (αn)n≥1 be such that ∀n ≥ 1, αn < min(M1) and αn → min(M1). Since
αn /∈ M1, we have FX(α) < p and letting n go to infinity, FX(min(M1)

−) ≤ p, i.e.,
min(M1) ∈M2, thus min(M1) ≤ max(M2).
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ϕ being a convex function over R, it has left and right derivatives at each α ∈ R.
They can be computed using the left and right derivatives of the absolute value, followed
by an application of the dominated convergence theorem. Thus

ϕ′
−(α) =

∫
R
(1x<α − 1x≥α)dµ(x)− (2p− 1) = 2(P(X < α)− p)

and
ϕ′
+(α) =

∫
R
(1x≤α − 1x>α)dµ(x)− (2p− 1) = 2(P(X ≤ α)− p).

Since ϕ is convex, α is a minimizer of ϕ if and only if 0 ∈ ∂ϕ(α), i.e., 0 is in the interval
[2(P(X < α)− p), 2(P(X ≤ α)− p)], or equivalently α ∈ M1 ∩M2. Using the explicit
forms of M1 and M2 proved above, we find Med(µ) = [min(M1),max(M2)].

Proof of Corollary 4.6. 1. Suppose that µ has at least two ℓ-quantiles. By the second
item of Proposition 4.5, we must have min(M1) < max(M2). By the definitions of M1

and M2 we have the chain of inequalities

p ≤ P(X ≤ min(M1)) ≤ P(X < max(M2)) ≤ p,

hence µ
(
(−∞,min(M1)]

)
= P(X ≤ min(M1)) = p. Replacing X with −X yields

similarly P(X ≥ max(M2)) = 1−p. For the converse, if α1 < α2 verify µ((−∞, α1]) = p
and µ([α2,∞)) = 1 − p, then α1 ∈ M1 and α2 ∈ M2, hence min(M1) ≤ α1 < α2 ≤
max(M2). Consequently, by the second item of Proposition 4.5 there are at least two
ℓ-quantiles.

2. If FX(α1) = FX(α2) = p with α1 ̸= α2, since FX(α
−
1 ) ≤ FX(α1) = p, α1 is

an ℓ-quantile, and so is α2. Conversely, if µ has at least two ℓ-quantiles we consider
α ∈ (min(M1),max(M2)). Then as in the proof of the first item, p ≤ FX(min(M1)) ≤
FX(α) ≤ FX(max(M2)

−) ≤ p, hence FX(min(M1)) = FX(α) = p.
3. If α < min(M1), then α /∈ M1 and FX(α) < p. If α ∈ (min(M1),max(M2)),

then as seen in the proof of the second item, FX(min(M1)) = FX(α) = p hence FX

is equal to p on the interval [min(M1), α], hence also over [min(M1),max(M2)). If
α > max(M2), then α /∈M2 and FX(α) ≥ FX(α

−) > p.

4.7.3 Proofs for Section 4.2.3

In the following lemma we consider the situation where there is an isometry J from E
into another vector space F . The measure µ is then naturally transported to a measure
µ̃ on the image J(E), and this gives rise to another objective function ϕ̃. Note that J
need not be surjective.

Lemma 4.81. Let (E, ∥ · ∥E) and (F, ∥ · ∥F ) be normed spaces, J : E → F be a linear
isometry such that J(E) is a Borel subset of F , and µ be a Borel probability measure
on E.

1. Let µ̃ be the measure induced by J on J(E), ℓ̃ = ℓ ◦ J−1 and ϕ̃ : J(E) → R be
the corresponding function given by Definition 4.1. Then ∥ℓ̃∥∗ = ∥ℓ∥∗ < 1,

∀α ∈ E, ϕ(α) = ϕ̃(Jα) and ∀β ∈ J(E), ϕ̃(β) = ϕ(J−1β).
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2. Let F = E∗∗ and J be the canonical isometry into the second dual of E. Further,
let µ̂ = J♯µ be the measure induced by J on E∗∗, and ϕ̂0 : E

∗∗ → R be the function
given by Definition 4.1. Then

∀α ∈ E, ϕ0(α) = ϕ̂0(Jα) and ∀β ∈ J(E), ϕ̂0(β) = ϕ0(J
−1β).

Proof of Lemma 4.81. Since J is a bounded operator, it is Borel measurable from E
to F , hence the pushforward measure J♯µ is a Borel probability measure on F , and µ̃
is its restriction to the Borel subset J(E). We have

∥ℓ̃∥∗ = sup
β∈J(E)
∥β∥F=1

ℓ(J−1(β)) = sup
α∈E

∥α∥E=1

ℓ(α) = ∥ℓ∥∗.

For any α ∈ E,

ϕ(α) =

∫
E

(∥J−1(Jα− Jx)∥E − ∥J−1(Jx)∥E)dµ(x)− ℓ(J−1Jα)

=

∫
E

(∥Jα− Jx∥F − ∥Jx∥F )dµ(x)− (ℓ ◦ J−1)(Jα)

=

∫
J(E)

(∥Jα− y∥F − ∥y∥F )dµ̃(y)− ℓ̃(Jα) = ϕ̃(Jα).

The second item is obtained by a similar computation with ℓ = 0.

Proof of Proposition 4.8. 1. By Proposition 4.2 ϕ is continuous, convex and coercive.
Since E is reflexive, ϕ reaches its infimum by Theorem 2.11 and Remark 2.13 in [17].

2. In Section 3.9 of [148] Kemperman proves existence only when ℓ = 0 and
E = F ∗ where F is a separable Banach space. It is easily seen from his work that the
completeness assumption on F is superfluous. Since ℓ is a linear functional on F ∗, it is
in fact an element of F ∗∗. By assumption ℓ is in J(F ), hence ℓ is simply an evaluation
map. To extend Kemperman’s proof, it suffices to note that ℓ(αn) →n ℓ(α) for any
sequence (αn) that converges in the weak∗ topology of E∗ to a limit α.

Assume now that equality is replaced by the surjective isometry I : E → F ∗. Let
µ̃, ℓ̃, ϕ̃ be as in Lemma 4.81. The assumption on ℓ rewrites as ℓ̃ ∈ J(F ), thus by the
previous paragraph µ̃ has at least one ℓ̃-quantile, say β⋆ ∈ Quant(µ̃). By Lemma 4.81,
for any α ∈ E we have ϕ(α) = ϕ̃(Iα) ≥ ϕ̃(β⋆) = ϕ(I−1β⋆), hence I−1β⋆ ∈ Quant(µ).

3. Let P : E∗∗ → E∗∗ denote the bounded linear projection with range J(E), so
that J(E) = ker(Id−P ) and J(E) is a closed subspace of E∗∗, hence a Borel subset of
E∗∗ (this will be needed below).

Using the notations of Lemma 4.81, we prove first that ϕ̂0 has a minimum by exploit-
ing the weak∗ compactness of closed balls in E∗∗ and the weak∗ lower semicontinuity
of the norm. Since (E∗∗, ∥ · ∥∗∗) may not be separable (this is typically the case when
E = L1), we must at times consider the separable subspace J(E) in order to invoke
some external results.

Lemma 4.82. The objective function ϕ̂0 reaches its infimum over E∗∗.
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Proof of Lemma 4.82. By Proposition 4.2, ϕ̂0 has a finite infimum and it is coercive, so
there is some R > 0 such that ∥β∥∗∗ > R =⇒ ϕ̂0(β) > inf(ϕ̂0)+1. Since E∗∗ is the dual
space of E∗, we can equip E∗∗ with the weak∗ topology. Let B = {y ∈ E∗∗ : ∥y∥∗∗ ≤ R}
denote the closed ball with center 0 and radius R. By the Banach–Alaoglu theorem
[7, Theorem 6.21], B is weak∗ compact. If we prove that the restriction of ϕ̂0 to B
is weak∗ lower semicontinuous (i.e., lower semicontinuous w.r.t. the topology that B
inherits from the weak∗ topology), then by [7, Theorem 2.43] ϕ̂0 reaches its infimum
over B, which coincides with its infimum over the whole space E∗∗ by the definition of
R.

Consequently, it remains to prove that ϕ̂0|B is lower semicontinuous with respect to
TB, the relative topology induced on B by the weak∗ topology of E∗∗. We fix y0 ∈ R and
we prove that the set {β ∈ B : ϕ̂0(β) > y0} is open w.r.t. the topology TB. Fix β0 ∈ B
such that ϕ̂0(β0) > y0, and set ϵ = ϕ̂0(β0)−y0 > 0. We consider µ̃, the restriction of J♯µ
to the Borel set J(E). Note that µ̃(J(E)) = µ̂(J(E)∩J(E)) = (J♯µ)(J(E)) = 1, hence
µ̃ is a probability measure on J(E). Since (E, ∥·∥) is separable, so is (J(E), ∥·∥∗∗). By
Theorems 15.10 and 15.12 in [7], there is some sequence (µ̃n)n≥1 of finitely supported
measures on J(E) which converges weakly (i.e., in the usual sense for measures) to µ̃.
For each β ∈ B we define the function fβ : J(E) → R, y 7→ ∥β − y∥∗∗ − ∥y∥∗∗. The
family (fβ)β∈B is uniformly bounded by R and pointwise equicontinuous. Theorem 3.1
in [219] yields the following convergence:

sup
β∈B

∣∣∣ ∫
J(E)

fβ(y)dµ̃n(y)−
∫
J(E)

fβ(y)dµ̃(y)
∣∣∣ −−−→

n→∞
0,

so there is some n0 ≥ 1 such that

sup
β∈B

∣∣∣ ∫
J(E)

fβ(y)dµ̃n0(y)−
∫
J(E)

fβ(y)dµ̃(y)
∣∣∣ < ϵ

2
. (4.13)

Let us write the measure µ̃n0 as
∑m

i=1 piδyi with yi ∈ J(E). Note that∫
J(E)

fβ(y)dµ̃n0(y) =
m∑
i=1

pi(∥β − yi∥∗∗ − ∥yi∥∗∗)

and ∫
J(E)

fβ(y)dµ̃(y) =

∫
J(E)

(∥β − y∥∗∗ − ∥y∥∗∗)dµ̃(y)

(i)
=

∫
J(E)

(∥β − y∥∗∗ − ∥y∥∗∗)dµ̂(y)

(ii)
=

∫
E∗∗

(∥β − y∥∗∗ − ∥y∥∗∗)dµ̂(y) = ϕ̂0(β),

where equality (i) follows from the definition of µ̃ and integration over J(E), and (ii)
from the fact that µ̂ is concentrated on J(E). Letting φ : E∗∗ → R, β 7→∑m

i=1 pi(∥β−
yi∥∗∗ − ∥yi∥∗∗), (4.13) rewrites as

sup
β∈B

|φ(β)− ϕ̂0(β)| < ϵ/2. (4.14)
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Since ∥ · ∥∗∗ is weak∗ lower semicontinuous (see [7, Lemma 6.22]), the function φ is
weak∗ lower semicontinuous, hence the restriction of φ to B is lower semicontinuous
w.r.t. the topology TB. By inequality (4.14), φ(β0) > ϕ̂0(β0)−ϵ/2 = y0+ϵ/2. By lower
semicontinuity of φ there is some open U ∈ TB such that β ∈ U =⇒ φ(β) > y0 + ϵ/2.
Finally, since U ⊂ B,

∀β ∈ U, ϕ̂0(β) = φ(β) + (ϕ̂0(β)− φ(β)) > (y0 + ϵ/2)− ϵ/2 = y0.

This shows the set {β ∈ B : ϕ̂0(β) > y0} is open in TB. Thus ϕ̃0|B is lower semicontin-
uous with respect to TB. This ends the proof of Lemma 4.82.

Let β⋆ ∈ E∗∗ be a minimizer of ϕ̂0, which exists according to Lemma 4.82. Note
that

ϕ0(J
−1(Pβ⋆)) = ϕ̂0(Pβ⋆) (4.15)

=

∫
E

(∥Pβ⋆ − Jx∥∗∗ − ∥Jx∥∗∗)dµ(x)

=

∫
E

(∥P (β⋆ − Jx)∥∗∗ − ∥Jx∥∗∗)dµ(x) (4.16)

≤
∫
E

(∥β⋆ − Jx∥∗∗ − ∥Jx∥∗∗)dµ(x) (4.17)

= ϕ̂0(β⋆)

≤ inf
β∈J(E)

ϕ̂0(β)

= inf
α∈E

ϕ0(α), (4.18)

where (4.15) and (4.18) stem from Lemma 4.81, (4.16) follows from P (Jx) = Jx,
and (4.17) is a consequence of ∥P∥ = 1. We obtained the bound ϕ0(J

−1(Pβ⋆)) ≤
infα∈E ϕ0(α), hence J−1(Pβ⋆) ∈ E is a minimizer of ϕ0, i.e., a geometric median of
µ.

Let F be a normed vector space over C23. The following lemma states connections
between F and FR:

Lemma 4.83. 1. If F is reflexive then FR is reflexive.

2. If F is C24-isometrically isomorphic to the dual of a separable complex normed
space, then FR is R-isometrically isomorphic to the dual of a separable real normed
space.

3. If F is separable and JC25(F ) is 1-complemented in F ∗∗ (where JC26 is the canon-
ical C27-linear isometry from F to F ∗∗), then FR is separable and J(F ) is 1-
complemented in (FR)

∗∗.

Proof of Lemma 4.83. Item 1. follows from Proposition 1.13.1 in [186].
For the second item, suppose F is C28-isometrically isomorphic to G∗ where G is

a complex separable normed space. Then GR is separable and FR is R-isometrically
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isomorphic to (G∗)R. Since (G∗)R is R-isometrically isomorphic to (GR)
∗ (see the proof

of [186, Proposition 1.13.1]), FR is R-isometrically isomorphic to (GR)
∗, which is the

dual of a separable real normed space.
Item 3. follows from Remark c) in [114, p.101].

Proof of Corollary 4.12. By the first point of Proposition 4.8, it suffices to check that
each space is reflexive. If E derives from a complex vector space F we show that F is
reflexive and then we apply Lemma 4.83. If E is truly a real vector space we directly
check that E is reflexive.

Reflexivity is a well-known fact for finite-dimensional, Hilbert and Lp(S,A, ν) spaces.
W k,p(Ω) is reflexive when 1 < p <∞, see [1, Theorem 3.6]. Under the assumptions of
the corollary, LΦ(S,A, ν) is reflexive by [218, Theorem 10 p.112]. When p ∈ (1,∞),
the space Sp(H) is uniformly convex (see Definition 4.15 and [184] for the proof), hence
reflexive (see [186, Theorem 5.2.15]).

Proof of Corollary 4.13. Regarding the first item, the assumptions on (S,A, ν) are
given to ensure the separability of L1(S,A, ν) (see [229, Lemma 27.23]). Since L∞(S,A, ν)
is always isometric to the dual of L1(S,A, ν), existence of medians when p = ∞ follows.
For p = 1, it suffices to note that L1(S,A, ν) is 1-complemented in its second dual: this
is proved for L1([0, 1],B([0, 1]), λ) in Proposition 6.3.10 of [6] and for any L1(S,A, ν)
in Appendix B10 of [72].

For item 2., it is proven in [208, Proposition 2.4] (with k = 1 in their notation)
that BV (Ω) is isometrically isomorphic to the dual of the quotient space C0(Ω, ℓ

n
∞)/F

where ℓn∞ classically denotes Rn with the ∥ · ∥∞ norm , C0(Ω, ℓ
n
∞) is the closure in

the sup norm of Cc(Ω, ℓ
n
∞) (the space of ℓn∞-valued continuous functions with compact

supports in Ω), and F is a closed subspace of C0(Ω, ℓ
n
∞). It is easily seen that C0(Ω, ℓ

n
∞)

is separable, hence the quotient above is separable as well.
For the third item, we let C(H) denote the space of compact operators on H

equipped with the operator norm. Since H is separable, so is C(H) by [90, Proposition
7.5]. Besides, S1(H) is isometrically isomorphic to C(H)∗ (see [189, Proposition 16.24]),
so existence is obtained for S1(H).

It is known that B(H) is isometrically isomorphic to S1(H)∗ (see [189, Proposition
16.26]). Since H is separable, S1(H) is separable w.r.t. the trace-class norm by [68,
Theorem 18.11 (d)].

4.7.4 Proofs for Section 4.2.4

Proof of Proposition 4.17. 1. We show the stronger result that ϕ is a strictly convex
function. Assume the contrary: there are some λ ∈ (0, 1), α1 ̸= α2 with

ϕ((1− λ)α1 + λα2) = (1− λ)ϕ(α1) + λϕ(α2).

Then the function

f : x 7→ (1− λ)∥α1 − x∥+ λ∥α2 − x∥ − ∥(1− λ)(α1 − x) + λ(α2 − x)∥

is nonnegative and has µ-integral zero. Let A = {x ∈ E : f(x) = 0}, so that µ(A) = 1.
Consider x ∈ A and assume first that x /∈ {α1, α2}. By the strict convexity of E, there
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is some Kx > 0 with (1 − λ)(α1 − x) = Kxλ(α2 − x). Since α1 ̸= α2, we must have
1− λ− λKx ̸= 0, and the previous equality yields

x = α1 +
λKx

1− λ− λKx

(α1 − α2),

hence
x ∈ α1 + R(α1 − α2). (4.19)

Since (4.19) holds as well in the case where x ∈ {α1, α2}, we obtain the inclusion
A ⊂ α1+R(α1−α2) and µ gives full mass to the line α1+R(α1−α2). This contradicts
µ ∈ M∼ hence ϕ is strictly convex, so it can have at most one minimizer.

2. First we drop the condition µ ∈ M∼. Consider µ = 1
2
(δx1 + δx2) where x1, x2 are

any two distinct unit vectors in E. By the triangle inequality, ϕ0(α) ≥ 1/2∥x1−x2∥−1
holds for any α ∈ E and equality is attained over [x1, x2], the closed line segment
between x1 and x2. Hence [x1, x2] ⊂ Med(µ). Note that the inclusion holds in any
space E, regardless of strict convexity.

Next, we give an example of a space lacking strict convexity and a measure µ ∈ M∼
with more than one median. Consider (R2, ∥ · ∥∞) and µ = 1

4
(δ(−1,0) + δ(1,0) + δ(0,1) +

δ(0,−1)) (this is Example 3.4 in [148]). This space is not strictly convex and µ is not
concentrated on a line. Straightforward computations show that Med(µ) is the convex
hull of the four points that support µ.

3. We prove the contrapositive: we assume E is not strictly convex and we construct
some µ ∈ M∼ with at least two medians. By assumption, it is possible to find two
distinct points y1, y2 in the unit sphere such that the segment [y1, y2] is a subset of
the unit sphere as well. Let x1 = 2

3
y1 +

1
3
y2, x2 = 1

3
y1 +

2
3
y2 be on the segment and

µ = 1
4
(δx1 + δ−x1 + δx2 + δ−x2). For every α ∈ E, by the triangle inequality

ϕ0(α) + 1 =
1

4
(∥α− x1∥+ ∥α + x1∥+ ∥α− x2∥+ ∥α + x2∥) ≥

1

4
(∥2x1∥+ ∥2x2∥) = 1,

hence ϕ0 is bounded from below by 0. But ϕ0(0) = 0 and

ϕ0

(
1/6(y1−y2)

)
+1 =

1

4

(
∥1
2
y1+

1

2
y2∥+∥5

6
y1+

1

6
y2∥+∥5

6
y1+

1

6
y2∥+∥1

2
y1+

1

2
y2∥
)
= 1

since by assumption the quantities inside each norm lie on the unit sphere. Conse-
quently, 0 and 1/6(y1 − y2) are distinct geometric medians of µ. It remains to show
that µ ∈ M∼. If it is not the case, x2 must lie on the line Rx1, hence y1 and y2 are
linearly dependent. Since they are distinct unit vectors, this implies y1 = −y2. This
contradicts the hypothesis that [y1, y2] be a subset of the unit sphere, since the segment
contains zero.

Proof of Corollary 4.18. With the notations of Lemma 4.83, if F is a complex vector
space such that (F, ∥·∥) is strictly convex then (FR, ∥·∥) is a strictly convex real vector
space. Consequently, when E derives from a complex vector space F it suffices to check
that F is strictly convex.

1. A uniformly convex Banach space, whether real or complex, is both reflexive
[186, Theorem 5.2.15] and strictly convex [186, Proposition 5.2.6].
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a) A strictly convex finite-dimensional space is uniformly convex [186, Proposition
5.2.14].

b) A Hilbert space is uniformly convex [91, p.430].

c) For 1 < p <∞, Lp(S,A, ν) is uniformly convex [91, Theorem 9.3].

d) For 1 < p <∞, W k,p(Ω) is uniformly convex [1, Theorem 3.6].

e) Sp(H) with 1 < p <∞ is uniformly convex [184].

2. Under these assumptions, LΦ(S,A, ν) is strictly convex when equipped with the
Orlicz norm [218, Corollary 7 p.275]. Existence is already obtained from Corollary 4.12.

3. Under these assumptions, LΦ(S,A, ν) is strictly convex when equipped with the
gauge norm [218, Corollary 5 p.272]. Existence is already obtained from Corollary 4.12.

In the proof of Proposition 4.19 below, we need the following common technical
fact which we show here since we could not find a reference. With the terminology of
Section 4.2.3, we show that L is 1-complemented in E.

Lemma 4.84. Let L be a one-dimensional subspace of E. There exists a bounded
linear projection P : E → E with range L and satisfying ∥P∥ = 1.

Proof of Lemma 4.84. We write L = Rv with ∥v∥ = 1. Let f ∈ L∗ be the bounded
linear functional which maps x = λv to f(x) = λ. It is clear that f has dual norm 1
and |f(v)| = 1. By the Hahn-Banach theorem it has an extension g ∈ E∗ with dual
norm 1. Let P : E → E, x 7→ g(x)v. P is linear, P 2 = P , the range of P is L, P is
bounded and ∥P∥ = 1.

Proof of Proposition 4.19. 1. We write the affine line as L = u + Rv with u, v ∈ E
and ∥v∥ = 1. Let µ̃ be the shifted measure defined by µ̃(A) = µ(u + A), so that µ̃ is
concentrated on the line Rv. We temporarily write ϕµ and ϕµ̃ to clarify the measure
we consider when integrating. It is easily seen that for any α ∈ E, ϕµ̃(α − u) =
ϕµ(α) − ϕµ(u), hence Med(µ) = u + Med(µ̃). We can therefore suppose w.l.o.g. that
u = 0, so that L is a linear subspace of dimension one which supports µ.

We show the inclusion Med(µ) ⊂ L. Suppose first that µ is degenerate, i.e., µ = δx
for some x ∈ E. Since µ(L) = 1, x must lie on L. We also have Med(µ) = {x},
hence the claim. We can therefore assume that µ is nondegenerate in the rest of the
paragraph. Suppose for the sake of contradiction that there is a minimizer α⋆ that is
not in L. Since µ is concentrated on L and using Lemma 4.84,

ϕ0(α⋆) =

∫
L

(∥α⋆ − x∥ − ∥x∥)dµ(x) ≥
∫
L

(∥P (α⋆ − x)∥ − ∥x∥)dµ(x)

=

∫
L

(∥P (α⋆)− x∥ − ∥x∥)dµ(x) = ϕ0(P (α⋆))
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hence P (α⋆) is a minimizer as well, which is distinct from α⋆ by assumption. By the
strict convexity of (E, ∥·∥), following the proof of item 1. in Proposition 4.17 we obtain
that µ is concentrated on the affine line α⋆ + R(α⋆ − Pα⋆), hence the intersection

L ∩
(
α⋆ + R(α⋆ − Pα⋆)

)
has probability 1, and is thus nonempty. Since α⋆ is in α⋆ + R(α⋆ − Pα⋆) but not in
L, the intersection of the lines must be some singleton {x} which has mass 1, hence µ
is degenerate, a contradiction. The inclusion Med(µ) ⊂ L is proved.

Since any minimizer of ϕ must lie in L we can restrict our attention to this line.
As in the proof of Lemma 4.84, let f ∈ L∗ be the isomorphism f : λv 7→ λ and ν be
the pushforward measure on R defined by ν = f♯µ. For α ∈ L, the equality α = f(α)v
holds, thus

ϕµ(α) =

∫
L

(∥f(α)v − x∥ − ∥x∥)dµ(x) =
∫
L

(∥f(α)v − f(x)v∥ − ∥f(x)v∥)dµ(x)

=

∫
R
(|f(α)− λ| − |λ|)dν(λ) = ϕν(f(α)),

where we used that v has norm 1. Let mmin and mmax ∈ R denote the smallest
and largest median of ν (see Proposition 4.5). From the previous paragraph, α ∈
Med(µ) ⇐⇒ α ∈ Med(µ) ∩ L and from the last computation α ∈ Med(µ) ∩ L ⇐⇒
f(α) ∈ Med(ν), so equivalently α is in the segment [mminv,mmaxv] ⊂ L.

2. Consider (R2, ∥ · ∥∞) and µ = 1
2
(δ(−1,0) + δ(1,0)) (this is Example 3.4 in [148]).

Then µ ∈ M− but Med(µ) is the square with vertices (−1, 0), (1, 0), (0, 1), (0,−1).
3. We consider (R2, ∥ · ∥2), µ = 1

2
(δ(−1,0) + δ(1,0)) and ℓ : (α1, α2) 7→ α2/2. The

smallest value attained by ϕ on the supporting line R × {0} is 0, while the global
minimum value of ϕ is

√
3/2− 1 < 0, which is attained at α = (0, 1/

√
3).

4. The proof is similar to that of item 3. in Proposition 4.17. We proceed with the
contrapositive: we assume that E is not strictly convex and we construct µ ∈ M− such
that Med(µ) is not a subset of the affine line supporting µ. It is possible to find two
distinct points y1, y2 in the unit sphere such that the segment [y1, y2] is a subset of the
unit sphere as well. Let x1 = 1

2
y1+

1
2
y2 be on the segment and µ = 1

2
(δx1+δ−x1) ∈ M−.

For every α ∈ E the triangle inequality yields ϕ(α) ≥ 0, and

ϕ
(
1/4(y1 − y2)

)
=

1

2

(
∥1
4
y1 +

3

4
y2∥+ ∥3

4
y1 +

1

4
y2∥
)
− 1 = 0.

Consequently, 1/4(y1− y2) is a median of µ and it remains to show that 1/4(y1− y2) /∈
Rx1, or equivalently that y1−y2 is linearly independent of y1+y2. It suffices to observe
that y1 and y2 are linearly independent themselves. Otherwise, since they are distinct
unit vectors we have y2 = −y1 and x1 = 0 lies on the unit sphere, which is absurd.
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4.8 Proofs for Section 4.3

4.8.1 Proofs for Section 4.3.2

The following lemma collects useful facts on outer and inner probabilities that we will
use in proofs later.

Lemma 4.85. For arbitrary subsets B1, B2 of Ω,

1. If B1 is measurable, i.e., B1 ∈ F , then P∗(B1) = P∗(B1) = P(B1).

2. If B1 ⊂ B2 then P∗(B1) ≤ P∗(B2) and P∗(B1) ≤ P∗(B2).

3. P∗(B1 ∪B2) ≤ P∗(B1) + P∗(B2) and P∗(B1 ∩B2) ≥ P∗(B1) + P∗(B2)− 1.

4. If P∗(B1) = P∗(B2) = 1 then P∗(B1 ∩B2) = 1.

Let (An)n≥1, (Bn)n≥1 be sequences of subsets of Ω.

5. If limn P∗(An ∩Bn) = 0 and limn P∗(Bn) = 1, then limn P∗(An) = 0.

Proof of Lemma 4.85. The first and second item follow easily from the definitions of
inner and outer probabilities. For the third item it suffices to prove P∗(B1 ∪ B2) ≤
P∗(B1) + P∗(B2): this inequality is a consequence of Problem 15 in [261, Chapter 1.2].
The fourth item follows immediately from the third. For the last item, we note the
inclusion An ⊂ (An ∩Bn) ∪Bc

n, hence by subadditivity

P∗(An) ≤ P∗(An ∩Bn) + P∗(Bc
n) = P∗(An ∩Bn) + 1− P∗(Bn),

and the claim follows.

4.8.2 Addendum and proofs for Section 4.3.3

We introduce the weaker notion of universal measurability.

Definition 4.86. Let (X,A) and (Y,B) be a measurable spaces.

1. A subset C ⊂ X is called universally measurable in (X,A) if C belongs to the
ν-completion of A for each probability measure ν defined on (X,A).

2. A map f : X → Y is called universally measurable if for each D ∈ B, the set
f−1(D) is universally measurable in (X,A).

Proof of Theorem 4.25. Let n ≥ 1 be fixed. We let f be the function

f : En × R>0 × E → R

(x1, . . . , xn, ϵ, α) 7→
1

n

n∑
i=1

(∥α− xi∥ − ∥xi∥)− ℓ(α).
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We show the existence of a Borel measurable ψ : En × R>0 → E such that

f
(
x1, . . . , xn, ϵ, ψ(x1, . . . , xn, ϵ)

)
≤ ϵ+ inf

α∈E
f(x1, . . . , xn, ϵ, α)

for each x1, . . . , xn, ϵ. The infimum is finite by Proposition 4.2. We could make use
of Theorem 1 in Schäl [228] by letting, with their notation, S = En × R>0, A = E,
D : s 7→ E and ε : (x1, . . . , xn, ϵ) 7→ ϵ. We give a direct proof instead that does not
resort to Schäl’s machinery. We strive for the greatest generality in our arguments, so
that our method may be applied to other contexts.

Since E is separable it has some countable dense subset {ep : p ≥ 1}. We let τ be
the function

τ : En × R>0 → N>0

(x1, . . . , xn, ϵ) 7→ min{p : f(x1, . . . , xn, ϵ, ep) ≤ inf
α∈E

f(x1, . . . , xn, ϵ, α) + ϵ}.

τ is well-defined because ϵ is positive and f is upper semicontinuous in its last argument.
Regarding measurability of τ , we put the discrete σ-algebra on N>0 and we note that

{τ = p} =

p−1⋂
i=1

{(x1, . . . , xn, ϵ) : f(x1, . . . , xn, ϵ, ei) > inf
α∈E

f(x1, . . . , xn, ϵ, α) + ϵ}

∩ {(x1, . . . , xn, ϵ) : f(x1, . . . , xn, ϵ, ep) ≤ inf
α∈E

f(x1, . . . , xn, ϵ, α) + ϵ}.

For each α, the function (x1, . . . , xn, ϵ) 7→ f(x1, . . . , xn, ϵ, α) is upper semicontinuous,
hence so is the function (x1, . . . , xn, ϵ) 7→ infα∈E f(x1, . . . , xn, ϵ, α). Since upper semi-
continuity implies Borel measurability, τ is Borel measurable. Finally we let ψ = eτ .
The vector (X1, . . . , Xn, ϵn) is measurable between Ω and and En × R>0, where the
latter is equipped with the product σ-algebra B(E)⊗n ⊗B(R>0). Since E is separable,
this last σ-algebra is equal to B(En×R>0). By composition ψ(X1, . . . , Xn, ϵn) is Borel
measurable and by construction it is a selection from the set ϵn-Quant(µ̂n).

Proof of Theorem 4.26. Let n ≥ 1 be fixed and define f as

f : En × E → R

(x1, . . . , xn, α) 7→
1

n

n∑
i=1

(∥α− xi∥ − ∥xi∥)− ℓ(α).

By Theorem 2 (ii) in Brown and Purves [47] there is a universally Borel measurable
ψ : En → E such that

f
(
x1, . . . , xn, ψ(x1, . . . , xn)

)
= min

α∈E
f(x1, . . . , xn, α)

for each x1, . . . , xn.
For notational convenience we let Z = (X1, . . . , Xn) and we show that ψ(Z) is Borel

measurable: let B ∈ B(E) and note that

[ψ(Z)]−1(B) = Z−1(ψ−1(B)).
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Since ψ is universally measurable, the set ψ−1(B) is universally measurable in (En,B(En)).
Let PZ denote the pushforward of P by the vector Z. This is a measure on the measur-
able space (En,B(E)⊗n) = (En,B(En)) where the equality is due to the separability of
E. Consequently ψ−1(B) is in the PZ-completion of B(En): there exists two measurable
sets A,N ∈ B(En) and a subset M ⊂ N such that PZ(N) = 0 and ψ−1(B) = A ∪M .
We obtain therefore

[ψ(Z)]−1(B) = Z−1(A) ∪ Z−1(M).

The set Z−1(A) is in F by measurability of Z. Furthermore Z−1(M) ⊂ Z−1(N)
and P(Z−1(N)) = PZ(N) = 0. By the completeness assumption on (Ω,F ,P) the
set Z−1(M) is in F , hence so is [ψ(Z)]−1(B). We have proved that ψ(Z) is a Borel
measurable selection from Quant(µ̂n).

4.8.3 Proofs for Section 4.3.4

Proof of Proposition 4.28. We fix µ ∈ M∼ and we proceed by contradiction: for each
δ ∈ (0, 1] there is some affine line L with µ(L) > 1− δ.

Let n ≥ 1. Exploiting the hypothesis twice we find two affine lines Ln, L
′
n verifying

µ(Ln) > 1− 1/2n+1 and µ(L′
n) > µ(Ln). By the inequality 2(1− 1/2n+1) > 1 the lines

are neither disjoint, nor are they equal since µ(L′
n) ̸= µ(Ln). Consequently there exists

xn ∈ E such that Ln ∩ L′
n = {xn}, thus

µ({xn}) = µ(L′
n)− µ(L′

n ∩ Lc
n) > 1− 1/2n+1 − 1/2n+1 = 1− 1/2n.

Since for n ≥ 2 we have (1− 1/2) + (1− 1/2n) > 1, we obtain xn = x1 hence

µ({x1}) > 1− 1/2n

for each n ≥ 1, and finally µ({x1}) = 1. Therefore µ gives mass 1 to any affine line
going through x1, which contradicts µ ∈ M∼.

Proof of Proposition 4.29. We show first that the class C has VC dimension 2. Any
set with two elements {x, y} ⊂ E is clearly shattered by C and any subset with three
elements {x, y, z} cannot be shattered. Indeed, either w.l.o.g. y ∈ [x, z] and we consider
the labeling x 7→ 1, y 7→ 0, z 7→ 1, or the three points are not on an affine line and we
label x 7→ 1, y 7→ 1, z 7→ 1.

Next we define the class of indicator functions F = {1C : C ∈ C} and we verify
that F is µ-measurable [261, Definition 2.3.3]: we fix some n ≥ 1, (e1, . . . , en) ∈ Rn

and we show that the function

En → R

(x1, . . . , xn) 7→ sup
f∈F

∣∣∣ n∑
i=1

eif(xi)
∣∣∣

is measurable, where the σ-algebra on En is the µn-completion of B(E)⊗n = B(En).
To this end we let πi : En → E denote the i-th projection map on the first coordi-

nate, we define the diagonal class

F∆ = {(f ◦ π1, . . . , f ◦ πn) : f ∈ F},
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as well as the map γ

γ : F∆ × En → R

(h1, . . . , hn, x1, . . . , xn) 7→
n∑

i=1

eihi(x1, . . . , xn)

and the map T

T : E2 → F∆

(u, v) 7→ (1u+Rv ◦ π1, . . . ,1u+Rv ◦ πn).

We show next that γ is image admissible Suslin via (E2,B(E2), T ) (see [82, Section
5.3] for the definition). Since E is a separable Banach space, E2 is a Suslin measurable
space. T is clearly surjective and it remains to verify that the map

E2 × En → R

((u, v), (w1, . . . , wn)) 7→
n∑

i=1

ei1u+Rv(wi)

is (B(E2) ⊗ B(En),B(R))-measurable. By composition and the separability of E it
suffices more simply to show that ψ defined by

ψ : E3 → R
(u, v, w) 7→ 1u+Rv(w)

is Borel measurable, i.e., that ψ−1(0) ∈ B(E3). We let A = {(u, v, w) : v = 0 and u ̸=
w} and B = {(u, v, w) : u− w and v are linearly independent}, so that

ψ−1({0}) = A ∪B.

Since A = {(u, v, w) : v = 0} ∩ {(u, v, w) : u ̸= w}, A is the intersection of a closed
set and an open set, and is thus a Borel subset of E3. It is a standard exercise in
topology that {(x, y) : x and y linearly independent} is an open subset of E2 (see, e.g.,
[97, Problem 5.5]). From this fact it easily follows that B is open in E3, hence ψ is
Borel measurable and γ is image admissible Suslin. Then by Corollary 5.25 in [82] the
supremum function

En → R
(x1, . . . , xn) 7→ sup

(h1,...,hn)∈F∆

|γ(h1, . . . , hn, x1, . . . , xn)|

is universally measurable, hence measurable when En is endowed with the µn-completion
of B(En). By construction, the equality of suprema

sup
(h1,...,hn)∈F∆

|γ(h1, . . . , hn, x1, . . . , xn)| = sup
f∈F

∣∣∣ n∑
i=1

eif(xi)
∣∣∣
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holds for each (x1, . . . , xn), therefore the proof of µ-measurability is complete.
An obvious envelope for F is the constant function 1. By the discussion closing

Chapter 2.4 in [261] and the bound on covering numbers for VC classes [261, Theorem
2.6.4] we have all the ingredients needed to apply the Glivenko–Cantelli theorem [261,
Theorem 2.4.3], and the claim is proved.

Proof of Theorem 4.30. We use the notations of the previous proposition. Since µ is
in M∼, by Proposition 4.28 there exists δ ∈ (0, 1] such that for each affine line L,
µ(L) ≤ 1 − δ. By Proposition 4.29 and the definition of convergence outer almost
surely (see Definition 4.21), there is a sequence of random variables (∆n)n≥1 such that

sup
C∈C

|µ̂n(C)− µ(C)| ≤ ∆n (4.20)

for each n and (∆n)n≥1 converges P-almost surely to 0. We let Ω0 = {ω ∈ Ω :
limn∆

ω
n = 0} so that P(Ω0) = 1, and we fix some ω ∈ Ω0. There exists N ≥ 1 such

that n ≥ N =⇒ ∆ω
n ≤ δ/2. For n ≥ N and any affine line L, since L ∈ C we obtain by

(4.20) that µ̂ω
n(L) ≤ 1−δ/2. The strict convexity of E combined with Proposition 4.17

implies that Med(µ̂ω
n) is empty or a singleton whenever n ≥ N .

Let Ω1 denote the subset of Ω under consideration in Theorem 4.30. We have
proved the inclusion Ω0 ⊂ Ω1, hence by items 1. and 2. in Lemma 4.85 we have
P∗(Ω1) = 1.

4.9 Proofs for Section 4.4

4.9.1 Proofs for Section 4.4.1

Proof of Proposition 4.32. We prove the result for Mosco-convergence, the case of epi-
convergence is similar. Let (xnk

)k≥1 be a subsequence that converges in the weak
topology to some x ∈ E. We define the sequence (x̃n)n≥1 as follows: if n ∈ {nk, nk +
1, . . . , nk+1 − 1} then we let x̃n = xnk

, and we extend with x̃n = 0 for n < n1. By
construction (x̃n)n≥1 converges in the weak topology to x. Thus by Mosco-convergence
of (fn) we have

f(x) ≤ lim inf
n

fn(x̃n) ≤ lim inf
k

fnk
(x̃nk

) = lim inf
k

fnk
(xnk

) ≤ lim sup
k

fnk
(xnk

). (4.21)

By definition of (xn), the inequality fnk
(xnk

) ≤ inf(fnk
) + εnk

holds for each k ≥ 1,
hence

lim sup
k

fnk
(xnk

) ≤ lim sup
k

[inf(fnk
)] ≤ lim sup

n
[inf(fn)]. (4.22)

Next, we consider any z ∈ E and we show f(x) ≤ f(z). By Mosco-convergence,
there is some sequence (zn)n≥1 that converges in the norm topology to z and such that
lim supn fn(zn) ≤ f(z). Since inf(fn) ≤ fn(zn) for each n ≥ 1, we obtain

lim sup
n

[inf(fn)] ≤ lim sup
n

fn(zn) ≤ f(z). (4.23)

Combining inequalities (4.21), (4.22) and (4.23) yields f(x) ≤ f(z), hence x ∈ argmin f .
Note that reflexivity of E is not needed for the claim to hold.
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4.9.2 Proofs for Section 4.4.1

Proof of Proposition 4.36. We begin by showing that the set

{ω ∈ Ω : ∀B bounded, sup
α∈B

|ϕ̂ω
n(α)− ϕ(α)| −−−→

n→∞
0} (4.24)

is in F . For fixed ω ∈ Ω, the sequence (ϕ̂ω
n)n≥1 converges uniformly on bounded sets to

ϕ if and only if it converges uniformly on closed balls centered at 0 with rational radii,
so it suffices to prove for any r ∈ Q>0 and any n ≥ 1 that the function

An : ω 7→ sup
α∈B̄(0,r)

|ϕ̂ω
n(α)− ϕ(α)|

is measurable. Since E is separable, B̄(0, r) has a countable dense subset, say C. For
any fixed (x1, . . . , xn) ∈ En, the function

α 7→ 1

n

n∑
i=1

(∥α− xi∥ − ∥xi∥)− ℓ(α)− ϕ(α)

is continuous, hence the index set in the supremum can be replaced with C, so that
An = supα∈C |ϕ̂n(α)−ϕ(α)|. For each α ∈ C, the random variable ω 7→ |ϕ̂ω

n(α)−ϕ(α)|
is measurable, hence An is measurable as well. Consequently,⋂

r∈Q>0

{ω ∈ Ω : sup
α∈B̄(0,r)

|ϕ̂ω
n(α)− ϕ(α)| −−−→

n→∞
0} ∈ F ,

hence the set (4.24) is in F .
Since E is separable, by Varadarajan’s theorem [262] the set Ω0 := {ω : µ̂ω

n

weakly−−−→ µ}
is in F and P(Ω0) = 1. Fix some ω ∈ Ω0 and let B ⊂ E be bounded in norm by some
r ≥ 0. We show that ϕ̂ω

n converges uniformly to ϕ over B. For each α ∈ B, we let
φα : E → R, x 7→ ∥α− x∥− ∥x∥. By the reverse triangle inequality, ∀x ∈ E, |φα(x)| ≤
∥α∥ ≤ r, so the family (φα)α∈B is uniformly bounded. Fix some x0 ∈ E and note
similarly that |φα(x) − φα(x0)| ≤ 2∥x − x0∥, hence the family (φα)α∈B is pointwise
equicontinuous. By Theorem 3.1 in [219],

sup
α∈B

∣∣∣ ∫
E

φα(x)dµ̂
ω
n(x)−

∫
E

φα(x)dµ(x)
∣∣∣ −−−→

n→∞
0

which rewrites as
sup
α∈B

∣∣∣ϕ̂ω
n(α)− ϕ(α)

∣∣∣ −−−→
n→∞

0.

Therefore the event (4.24) contains Ω0, so it has probability 1.

Proof of Theorem 4.37. Let Ω0 be as in the proof of Proposition 4.36 and let Ω1 = {ω :
limn ϵ

ω
n = 0}. By Proposition 4.36 and Theorem 6.2.14 in [40] we have the inclusion

Ω0 ⊂ {ω ∈ Ω : ϕ̂ω
n

Mosco−−−→
n→∞

ϕ}.

Let Ω2 denote the subset of Ω considered in the statement of Theorem 4.37. The
Proposition 4.32 yields the further inclusion Ω0 ∩ Ω1 ⊂ Ω2. Since P(Ω0) = P∗(Ω1) = 1
we conclude by items 1., 4. and 2. in Lemma 4.85 that P∗(Ω2) = 1.
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Proof of Proposition 4.40. We make use of the machinery developed by Kemperman
in [148, Section 2]: he defines the function

h : R>0 → R, r 7→ 1

r

∫ r

0

µ({α ∈ E : ∥α∥ > u})du,

and he proves that h is nonincreasing, as well as the following lower bound: ϕ0(α) ≥
∥α∥(1 − 2h(∥α∥)), hence ϕ(α) ≥ ∥α∥(1 − 2h(∥α∥)) − ℓ(α) for every α ∈ E. Similarly
we define for each ω ∈ Ω and n ≥ 1 the functions hωn by replacing µ with µ̂ω

n; they are
nonincreasing and verify the same lower bound:

ϕ̂ω
n(α) ≥ ∥α∥(1− 2hωn(∥α∥))− ℓ(α)

≥ ∥α∥(1− ∥ℓ∥∗ − 2hωn(∥α∥)). (4.25)

For fixed r, n, ω we note that

hωn(r) =
1

r

∫ r

0

1

n

n∑
i=1

1∥Xω
i ∥>udu =

1

n

n∑
i=1

(
∥Xω

i ∥
r
1∥Xω

i ∥≤r + 1∥Xω
i ∥>r

)
=

1

r

1

n

n∑
i=1

(
∥Xω

i ∥1∥Xω
i ∥≤r

)
+

1

n

n∑
i=1

1∥Xω
i ∥>r. (4.26)

By the dominated convergence theorem we obtain the limits

1

r
E[∥X∥1∥X∥≤r] −−−→

r→∞
0 and E[1∥X∥>r] −−−→

r→∞
0,

hence we can find some R > 0 such that

R−1E[∥X∥1∥X∥≤R] + E[1∥X∥>R] < (1− ∥ℓ∥∗)/4.

By (4.26) and the strong law of large numbers, the measurable random variables ω 7→
hωn(R) converge P-almost surely to a constant strictly less than (1−∥ℓ∥∗)/4. Note that
R depends solely on the distribution of X, i.e., on the measure µ.

We can now turn to the proof of the first item in the proposition. We let Ω0 (resp.,
Ω1) be the event (resp., the set) where the almost-sure convergence of hn(R) (resp., of
ϵn) holds and we fix some ω ∈ Ω0 ∩ Ω1. Since ω ∈ Ω0 (resp., ω ∈ Ω1) the inequality

hωn(R) < (1− ∥ℓ∥∗)/4 (resp., ϵωn ≤ R(1− ∥ℓ∥∗)/2) (4.27)

holds for sufficiently large n. Therefore there exists N ≥ 1 such that for every n ≥ N
and α ∈ E verifying ∥α∥ > R, the following chain of inequalities is true:

ϕ̂ω
n(α) ≥ ∥α∥(1− ∥ℓ∥∗ − 2hωn(∥α∥)) ≥ ∥α∥(1− ∥ℓ∥∗ − 2hωn(R))

> R(1− ∥ℓ∥∗)/2 ≥ ϵωn ≥ inf(ϕ̂ω
n) + ϵωn,

where we used successively inequality (4.25), the monotonicity of hωn, inequalities (4.27)
and ϕ̂ω

n(0) = 0. Thus, for each n larger than N the set ϵωn-Quant(µ̂ω
n) is a subset of the

closed ball B̄(0, R). Since P∗(Ω0∩Ω1) = 1, the claim follows by item 2. of Lemma 4.85.
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The second item of Proposition 4.40 is an immediate consequence of the first.
For the third item the proof is similar. Since hn(R) converges P-almost surely, it

converges in P-probability as well, hence

P
(∣∣hn(R)− (R−1E[∥X1∥1∥X1∥≤R] + E[1∥X1∥>R])

∣∣ ≤ (1− ∥ℓ∥∗)/8
)
−−−→
n→∞

1. (4.28)

The following inclusions are obtained as above:{∣∣hn(R)− (R−1E[∥X1∥1∥X1∥≤R] + E[1∥X1∥>R])
∣∣ ≤ 1−∥ℓ∥∗

8

}
∩ {ϵn ≤ R(1−∥ℓ∥∗)

4
} (4.29)

⊂ {hn(R) < 3(1− ∥ℓ∥∗)/8} ∩ {ϵn ≤ R(1− ∥ℓ∥∗)/4}
⊂ {ϵn-Quant(µ̂n) ⊂ B̄(0, R)}.

By (4.28), by the convergence in outer probability of (ϵn) and item 3. of Lemma 4.85,
the set (4.29) has P∗-probability converging to 1, and the claim easily follows.

The last item is obtained directly from the third.

Proof of Theorem 4.42. Let Ω0 (resp., Ω1) be the subset of Ω having inner probability 1
in the second item of Proposition 4.40 (resp., in Theorem 4.37) and fix some ω ∈ Ω0∩Ω1.
We consider (α̂ω

n)n≥1 a sequence of ϵωn-empirical ℓ-quantiles and we write (α̂ω
nk
)k≥1 an

arbitrary subsequence. Since ω ∈ Ω0 there exists R > 0 such that all the α̂ω
n lie in the

closed ball B̄(0, R). Since E is a reflexive Banach space, B̄(0, R) is weakly compact, i.e.,
compact in the weak topology of E (see [7, Theorem 6.25]). By the Eberlein–Šmulian
theorem [7, Theorem 6.34], B̄(0, R) is weakly sequentially compact. Therefore (α̂ω

nk
)k≥1

has a subsequence (α̂ω
nkj

)j≥1 that converges in the weak topology to some α ∈ E. Since
(α̂ω

nkj
)j≥1 is a subsequence of the original sequence (α̂ω

n)n≥1 and since ω ∈ Ω1 we have
α ∈ Quant(µ).

Let Ω2 be the subset of Ω under scrutiny in the statement of Theorem 4.42. We
have proved the inclusion Ω0 ∩ Ω1 ⊂ Ω2. Since P∗(Ω0) = P∗(Ω1) = 1, items 2. and 4.
in Lemma 4.85 yield P∗(Ω2) = 1.

Proof of Theorem 4.43. Since (ϵn)n≥1 converges in outer probability to 0, it has a sub-
sequence (ϵnk

)k≥1 that converges outer almost surely to 0 (see [261, Lemma 1.9.2]).
This convergence clearly implies P∗-almost sure convergence to 0: we let Ω0 = {ω :
limk ϵ

ω
nk

= 0} so that P∗(Ω0) = 1. Additionally we let I denote the set of integers
I = {nk : k ≥ 1}. We define (en)n≥1 another sequence of nonnegative random variables
as follows:

eωn =

{
ϵωn if ω ∈ Ω0 and n ∈ I,

0 otherwise,

so that (en)n≥1 converges P∗-almost surely to 0 and ∀k ≥ 1,∀ω ∈ Ω0, eωnk
= ϵωnk

. We
apply the second item of Proposition 4.40 and Theorem 4.37 with the sequence (en)n≥1

in lieu of (ϵn)n≥1; let Ω1 and Ω2 denote the respective subsets of Ω that have inner
probability 1.

Fix some ω ∈ Ω0∩Ω1∩Ω2 and consider (α̂ω
n) a sequence of ϵωn-empirical ℓ-quantiles.

We let β̂ω
n be defined for each n ≥ 1 by

β̂ω
n =

{
α̂ω
n if n ∈ I,

any element of Quant(µ̂ω
n) otherwise,
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so that (β̂ω
n )n≥1 is a sequence of eωn-empirical ℓ-quantiles. Since ω ∈ Ω1 the sequence

(β̂ω
n )n≥1 is bounded in norm, hence so is the subsequence (β̂ω

nk
)k≥1. All these approx-

imate minimizers lie in some closed ball B̄(0, R) with R > 0. Since E is reflexive,
B̄(0, R) is weakly compact thus (β̂ω

nk
)k≥1 has a subsequence (β̂ω

nkj
)j≥1 that converges in

the weak topology to some α ∈ E. Since ω is in Ω2, Theorem 4.37 yields α ∈ Quant(µ).
But by definition β̂ω

nk
coincides with α̂ω

nk
for each k ≥ 1, hence (α̂ω

nkj
)j≥1 converges

in the weak topology to α ∈ Quant(µ). Let Ω3 be the subset of Ω under consideration
in the statement of Theorem 4.43. We have proved the inclusion Ω0 ∩ Ω1 ∩ Ω2 ⊂ Ω3.
Since P∗(Ω0) = P∗(Ω1) = P∗(Ω2) = 1, we obtain P∗(Ω3) = 1.

Proof of Corollary 4.44. Let Ω0 be the subset of inner probability 1 in the statement
of Theorem 4.42. Fix some ω ∈ Ω0 and suppose for the sake of contradiction that there
is some δ > 0 and increasing indexes nk such that for all k ≥ 1,

ϵωnk
-Quant(µ̂ω

nk
) ̸⊂ Quant(µ)δ.

Then for each k ≥ 1 we can find some α̂ω
nk

∈ ϵωnk
-Quant(µ̂ω

nk
) \ Quant(µ)δ. Since the

weak topology coincides with the norm topology in finite dimension, by Theorem 4.42
and taking a subsequence we may assume that (α̂ω

nk
)k converges to some α ∈ Quant(µ).

This contradicts α̂ω
nk
/∈ Quant(µ)δ, hence the inclusion

Ω0 ⊂ {ω : ∀δ > 0,∃N ≥ 1,∀n ≥ N, ϵn-Quant(µ̂n) ⊂ Quant(µ)δ},
from which the claim follows.

4.9.3 Proofs for Section 4.4.2

The following lemma gives a useful criterion for convergence of sequences in topological
spaces.

Lemma 4.87. Let (G, T ) be a topological space, (xn)n≥1 be a sequence in G and x ∈ G.
If any subsequence (xnk

)k≥1 has a further subsequence (xnkj
)j≥1 such that lim

j
xnkj

= x,

then the sequence (xn)n≥1 converges to x.

Proof of Lemma 4.87. Assume for the sake of contradiction that (xn)n≥1 does not con-
verge to x. Then there exists a neighborhood U of x such that the set {n : xn /∈ U}
is infinite. Consequently we can find a subsequence (xnk

)k≥1 with xnk
/∈ U for each

k ≥ 1. By assumption, there is a further subsequence (xnkj
)j≥1 that converges to x: in

particular there exists j ≥ 1 with xnkj
∈ U . This is a contradiction.

Proof of Theorem 4.45. Let Ω0 denote the subset of Ω that has inner probability 1 in
Theorem 4.42. We fix ω ∈ Ω0, we let (α̂ω

n)n≥1 be a sequence of ϵωn-empirical ℓ-quantiles
and we consider an arbitrary subsequence (α̂ω

nk
)k≥1. By Theorem 4.42 there exists a

further subsequence (α̂ω
nkj

)j≥1 that converges weakly to some α ∈ Quant(µ). Because
of Assumption (A7), Quant(µ) = {α⋆} hence α = α⋆. By Lemma 4.87 the sequence
(α̂ω

n)n≥1 converges in the weak topology of E to α⋆.
Let Ω1 denote the subset of Ω considered in the statement of Theorem 4.45. We

have established the inclusion Ω0 ⊂ Ω1. Since P∗(Ω0) = 1, the proof is complete.
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Remark 4.88. Gervini [101, Proof of Theorem 2] argues that L2(T ) equipped with its
weak topology is locally compact. With this topology, L2(T ) is a Hausdorff topological
vector space. If such a space is locally compact, then it is finite-dimensional [7, Theorem
5.26]. Since L2(T ) is infinite-dimensional, it is not locally compact when equipped with
its weak topology.
Remark 4.89. By the first item in Proposition 4.40, as far as convergence is concerned
we can assume w.l.o.g. that any sequence of ϵn-empirical ℓ-quantiles is contained in the
closed ball B̄(0, R). This set is compact in the weak topology of E [7, Theorem 6.25].
Since E is reflexive and separable, we have the separability of E∗∗, thus E∗ is separable
as well [159, Theorem 4.6.8], hence B̄(0, R) is weakly metrizable [7, Theorem 6.31]. Let
T denote the relative topology on B̄(0, R) induced by the weak topology of E (which
we denote by σ(E,E∗)). We have verified that (B̄(0, R), T ) is a compact metrizable
space.

Geometric quantiles fit the M -estimation framework developed in [132]. In Huber’s
notation we let Θ = X = B̄(0, R), ρ(x, θ) = ∥θ − x∥, a(x) = ∥x∥, b(θ) = ∥θ∥ + 1,
h(x) = −(1 + ∥ℓ∥∗). We equip Θ with the topology T , so that we have a compact
metrizable space, and this matches the topological setting considered by Huber.

Another technical detail that warrants verification is Assumption (A-2) in [132].
For each x, it requires lower semicontinuity of the function θ 7→ ρ(x, θ) = ∥θ−x∥−ℓ(θ)
defined on (Θ, T ). This follows from the lower semicontinuity of the norm as a function
on the topological space (E, σ(E,E∗)) [7, Lemma 6.22].

4.9.4 Proofs for Section 4.4.2

Lemma 4.90. ϕ has a well-separated minimizer if and only if ϕ is well-posed.

Proof of Lemma 4.90. =⇒ Let α⋆ ∈ argminϕ be well-separated. By the strict in-
equality in Definition 4.49 there cannot be another minimizer of ϕ. We consider (αn)n≥1

a minimizing sequence and ϵ > 0. Let η = inf
α∈E

∥α−α⋆∥≥ϵ

ϕ(α)− ϕ(α⋆), which is positive by

definition. Since (αn)n≥1 is minimizing, for n large enough we obtain ϕ(αn) < ϕ(α⋆)+η,
i.e.,

ϕ(αn) < inf
α∈E

∥α−α⋆∥≥ϵ

ϕ(α)

hence ∥αn − α⋆∥ < ϵ.
⇐= Let α⋆ denote the minimizer of ϕ. We show that it is well-separated. Assume

for the sake of contradiction that there is some ϵ0 > 0 such that ϕ(α⋆) ≥ inf
α∈E

∥α−α⋆∥≥ϵ0

ϕ(α).

Since α⋆ is a minimizer of ϕ, this infimum is actually equal to ϕ(α⋆). By an elementary
property of infima there is some sequence (αn)n≥1 such that ∀n ≥ 1, ∥αn − α⋆∥ ≥ ϵ0
and ϕ(αn) −−−→

n→∞
ϕ(α⋆). Hence (αn)n≥1 is a minimizing sequence that does not converge

in the norm topology to α⋆.

Proof of Proposition 4.51. 1. The assumptions of the Proposition ensure that ϕ has
a unique minimizer α⋆. By Lemma 4.90 it suffices to consider a minimizing sequence
(αn)n≥1 and prove that ∥αn − α⋆∥ −−−→

n→∞
0.
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We show first that (αn)n≥1 converges in the weak topology of E to α⋆. For this
purpose we make use of Lemma 4.87: let (αnk

)k≥1 be an arbitrary subsequence. Since ϕ
is coercive, (αnk

)k≥1 is bounded. E is reflexive, so the same weak compactness argument
as in the proof of Theorem 4.42 yields a subsequence (αnkj

)j≥1 that converges in the
weak topology of E to some α0 ∈ E. It remains to prove that α0 = α⋆. Fix some
x ∈ E and observe that the sequence (αnkj

− x)j≥1 converges weakly to α0 − x. Since
the norm is weakly lower semicontinuous (see [7, Lemma 6.22]),

∥α0 − x∥ − ∥x∥ ≤ lim inf
j

(∥αnkj
− x∥ − ∥x∥).

Integrating w.r.t. x yields

ϕ(α0) ≤
∫
E

lim inf
j

(∥αnkj
− x∥ − ∥x∥)dµ(x)− ℓ(α0)

(i)

≤ lim inf
j

∫
E

(∥αnkj
− x∥ − ∥x∥)dµ(x)− ℓ(α0)

(ii)
= lim inf

j

[
ϕ0(αnkj

)
]
− lim

j
ℓ(αnkj

)
(iii)
= lim inf

j
ϕ(αnkj

)
(iv)
= ϕ(α⋆).

Inequality (i) stems from Fatou’s lemma for functions with an integrable lower bound,
in equality (ii) we exploit the weak convergence of αnkj

, equality (iii) is justified by a
standard property of lim inf, and (iv) holds because (αn)n≥1 is a minimizing sequence.
The freshly derived inequality ϕ(α0) ≤ ϕ(α⋆) combined with Quant(µ) = {α⋆} implies
α0 = α⋆ and we can conclude that

αn
weakly−−−→
n→∞

α⋆. (4.30)

We show next that the sequence of norms (∥αn∥)n≥1 converges to ∥α⋆∥. Since it is a
bounded sequence of real numbers, it suffices to show that it has a unique subsequential
limit: we consider a subsequence (∥αnk

∥)k≥1 that converges to some R ≥ 0 and we prove
that R = ∥α⋆∥. By (4.30), for each x ∈ E the sequence (αnk

− x)k≥1 converges weakly
to α⋆ − x and by weak lower semicontinuity of the norm,

∥α⋆ − x∥ − ∥x∥ ≤ lim inf
k

(∥αnk
− x∥ − ∥x∥). (4.31)

Integrating w.r.t. x we obtain as above

ϕ(α⋆) ≤
∫
E

lim inf
k

(∥αnk
− x∥ − ∥x∥)dµ(x)− ℓ(α⋆) (4.32)

≤ lim inf
k

∫
E

(∥αnk
− x∥ − ∥x∥)dµ(x)− ℓ(α⋆)

= lim inf
k

ϕ(αnk
)

= ϕ(α⋆).

The inequality (4.32) is therefore an equality, i.e., the function

x 7→ lim inf
k

(∥αnk
− x∥ − ∥x∥)− (∥α⋆ − x∥ − ∥x∥)
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is nonnegative by (4.31) and has integral 0 by (4.32). Consequently, it is 0 µ-almost
everywhere and there exists some x0 ∈ E such that lim infk(∥αnk

− x0∥ − ∥x0∥) =
∥α⋆ − x0∥ − ∥x0∥, i.e., lim infk ∥αnk

− x0∥ = ∥α⋆ − x0∥. We can then find some further
subsequence (αnkj

)j≥1 such that

∥αnkj
− x0∥ −−−→

j→∞
∥α⋆ − x0∥.

But (αnkj
− x0)j≥1 converges weakly to α⋆ − x0, so by the Radon–Riesz property it

converges in the norm topology to α⋆ − x0, hence so does (αnkj
)j≥1 to α⋆, and in

particular ∥αnkj
∥ →j ∥α⋆∥, thus R = ∥α⋆∥ from which we obtain the convergence

∥αn∥ −−−→
n→∞

∥α⋆∥. (4.33)

By (4.30), (4.33) and the Radon–Riesz property, the first item of the Proposition is
proved.

2. Let (αn)n≥1 be a minimizing sequence such that αn ∈ L for each n ≥ 1. By
Assumption (A8) and Proposition 4.19, we have Med(µ) = {α⋆} and α⋆ ∈ L. As
seen in the proof of Proposition 4.19, we can assume w.l.o.g. that L goes through the
origin: L = Rv with ∥v∥ = 1. Using the same notations, we introduce the pushforward
measure ν on R so that Med(ν) = {f(α⋆)}. Since ∀α ∈ L, ϕµ(α) = ϕν(f(α)), we obtain
that (f(αn))n≥1 is a minimizing sequence for ϕν . By the first item of Proposition 4.51,
ϕν is well-posed hence (f(αn)) converges to f(α⋆). This implies the convergence of
(αn) to α⋆ in the norm topology.

Proof of Theorem 4.54. Let Ω0 = {ω : limn ϵ
ω
n = 0}, let Ω1 be the set having inner

probability 1 in the second item of Proposition 4.40 and let Ω2 be the almost-sure
event from Proposition 4.36. Fix some ω ∈ Ω0 ∩ Ω1 ∩ Ω2 and consider (α̂ω

n)n≥1 a
sequence of ϵωn-empirical medians. In view of Proposition 4.51 it suffices to prove that
(α̂ω

n)n≥1 is a minimizing sequence, i.e., ϕ(α̂ω
n) −−−→

n→∞
ϕ(α⋆).

Since ω ∈ Ω1 there is some ρ > 0 such that α⋆ and all the α̂ω
n lie in the closed ball

B̄(0, ρ). Note that

0 ≤ ϕ(α̂ω
n)− ϕ(α⋆) = ϕ(α̂ω

n)− ϕ̂ω
n(α̂

ω
n) + ϕ̂ω

n(α̂
ω
n)− ϕ(α⋆)

≤ sup
α∈B̄(0,ρ)

(
|ϕ̂ω

n(α)− ϕ(α)|
)
+ ϕ̂ω

n(α̂
ω
n)− ϕ(α⋆). (4.34)

Additionally we have the upper bound

ϕ̂ω
n(α̂

ω
n)− ϕ(α⋆) = (ϕ̂ω

n(α̂
ω
n)− inf(ϕ̂ω

n)) + (inf(ϕ̂ω
n)− ϕ̂ω

n(α⋆)) + (ϕ̂ω
n(α⋆)− ϕ(α⋆))

≤ ϵωn + sup
α∈B̄(0,ρ)

|ϕ̂ω
n(α)− ϕ(α)|. (4.35)

Plugging this in (4.34) yields

0 ≤ ϕ(α̂ω
n)− ϕ(α⋆) ≤ ϵωn + 2 sup

α∈B̄(0,ρ)

|ϕ̂ω
n(α)− ϕ(α)|.
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Since ω ∈ Ω0 ∩ Ω2 the right hand side of the last display converges to 0, hence
(α̂ω

n)n≥1 is a minimizing sequence. We have thus obtained the inclusion

Ω0 ∩ Ω1 ∩ Ω2 ⊂ {ω : ∥α̂ω
n − α⋆∥ →n 0}

and we conclude using Lemma 4.85.

Proof of Theorem 4.55. Let (α̂n)n≥1 be a sequence of ϵn-empirical quantiles. Fix some
ϵ > 0 for the remainder of the proof and let

η = inf
α∈E

∥α−α⋆∥≥ϵ

ϕ(α)− ϕ(α⋆),

so that η > 0 by Proposition 4.51 and Lemma 4.90. By definition of η

∀α ∈ E, ∥α− α⋆∥ ≥ ϵ =⇒ ϕ(α)− ϕ(α⋆) ≥ η,

and using the same algebraic manipulations and upper bounds as in (4.34) and (4.35),
we obtain the inclusions of sets valid for each n ≥ 1:

{∥α̂n − α⋆∥ ≥ ϵ} ⊂ {ϕ(α̂n)− ϕ(α⋆) ≥ η}
⊂ {ϕ(α̂n)− ϕ̂n(α̂n) + ϵn + ϕ̂n(α⋆)− ϕ(α⋆) ≥ η}
⊂ {ϕ(α̂n)− ϕ̂n(α̂n) ≥ η/4} ∪ {ϕ̂n(α⋆)− ϕ(α⋆) ≥ η/4} ∪ {ϵn ≥ η/2}.

(4.36)

To finish the proof, it suffices by Lemma 4.85 to show that each of the three sets
in (4.36) has outer probability converging to 0. Let R be as in Item 3. of Propo-
sition 4.40. By Proposition 4.36 and its proof the (measurable) random variables
supα∈B̄(0,R) |ϕ̂n(α)− ϕ(α)| converge P-almost surely to 0, hence in probability as well.
Combining this with the inclusion

{ϕ(α̂n)−ϕ̂n(α̂n) ≥ η/4}∩{ϵn-Quant(µ̂n) ⊂ B̄(0, R)} ⊂
{

sup
α∈B̄(0,R)

|ϕ̂n(α)−ϕ(α)| ≥ η/4
}

yields the convergence

P∗({ϕ(α̂n)− ϕ̂n(α̂n) ≥ η/4} ∩ {ϵn-Quant(µ̂n) ⊂ B̄(0, R)}
)
−−−→
n→∞

0.

Since P∗({ϵn-Quant(µ̂n) ⊂ B̄(0, R)}) →n 1 the fourth item of Lemma 4.85 yields the
wanted convergence

P∗(ϕ(α̂n)− ϕ̂n(α̂n) ≥ η/4) −−−→
n→∞

0.

In a similar fashion we show

P∗(ϕ̂n(α⋆)− ϕ(α⋆) ≥ η/4) −−−→
n→∞

0.

The convergence of (ϵn)n in outer probability to 0 finishes the proof.
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Proof of Proposition 4.57. Let Ω0,Ω1,Ω2 be as in the proof of Theorem 4.54. Let L
denote an affine line such that µ(L) = 1 and define the event Ω3 =

⋂
n≥1{Xn ∈ L},

so that P(Ω3) = 1. We fix some ω ∈ Ω0 ∩ Ω1 ∩ Ω2 ∩ Ω3 and we consider (α̂ω
n)n≥1 a

sequence of 0-empirical medians. Since ω ∈ Ω3 we have µ̂ω
n(L) = 1 for each n ≥ 1,

hence by Proposition 4.19 the empirical median α̂ω
n lies on L. We can then apply the

second item of Proposition 4.51 and finish the proof as for Theorem 4.54.
The adaptation of Theorem 4.55 is similar and therefore omitted.

Proof of Corollary 4.58. Uniformly convex Banach spaces are reflexive [186, Theorem
5.2.15], strictly convex [55, Proposition 5.2.6], and they enjoy the Radon–Riesz property
[186, Theorem 5.2.18]. Uniform convexity of each space in the list was established in
Corollary 4.18, it suffices to check separability.

Every finite-dimensional space is separable. Separability conditions for Lp spaces
are taken from Corollary 4.13. W k,p(Ω) is separable [1, Theorem 3.5]. Sp(H) is sepa-
rable because H is separable [68, Theorem 18.14 (c)].

4.10 Proofs for Section 4.5

4.10.1 Proofs for Section 4.5.1

Proof of Lemma 4.62. Given λ ∈ R≥0, if we replace (α, h) with (λα, λh) then both sides
of the first inequality are multiplied by λ and the second inequality is left unchanged.
We can thus assume w.l.o.g. that ∥α∥ = 1.

If α and h are linearly dependent, i.e., h = λα for some real λ then the inequalities
rewrite as∣∣|1 + λ| − 1− λ

∣∣ ≤ 1

2
(λ2 ∧ |λ|3) and

∣∣∣∣ 1 + λ

|1 + λ| − 1

∣∣∣∣ ≤ 2(|λ| ∧ λ2) (4.37)

where λ ̸= −1 in the rightmost one. The validity of (4.37) is easily checked by elemen-
tary calculus.

We can therefore assume that α and h are linearly independent and we can find
some β ∈ E such that {α, β} forms an orthonormal basis of span({α, h}). If we write
h = aα + bβ for some (a, b) ∈ R2, the inequalities of Lemma 4.62 rewrite as∣∣∣∣((1 + a)2 + b2

)1/2 − 1− a− b2

2

∣∣∣∣ ≤ 1

2
min

(
a2 + b2, (a2 + b2)3/2

)
,[( 1 + a

((1 + a)2 + b2)1/2
− 1
)2

+
( 1

((1 + a)2 + b2)1/2
− 1
)2
b2
]1/2

≤ 2min
(
(a2+b2)1/2, a2+b2

)
.

These last two inequalities can be proved using polar coordinates; this is rather tedious
and therefore omitted.

Proof of Proposition 4.64. For x ∈ E we let φx denote the function α 7→ ∥α−x∥−∥x∥.
The subdifferential of the norm of the Hilbert space E is given by

∂N(α) =

{
{α/∥α∥} if α ̸= 0,

{β : ∥β∥ ≤ 1} if α = 0.
(4.38)
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Let α, h ∈ E be fixed. By (4.38) the vector 1x ̸=α
α−x

∥α−x∥ is in the subdifferential of the
convex function φx at α, hence the following inequalities hold:

φx(α + h) ≥ φx(α) + ⟨1x ̸=α
α− x

∥α− x∥ , h⟩,

φx(α) ≥ φx(α + h) + ⟨1x ̸=α+h
α + h− x

∥α + h− x∥ ,−h⟩ for every h ∈ E.

Summing yields

0 ≤ φx(α+ h)−φx(α)− ⟨1x ̸=α
α− x

∥α− x∥ , h⟩ ≤ ⟨1x ̸=α+h
α + h− x

∥α + h− x∥ − 1x ̸=α
α− x

∥α− x∥ , h⟩.

To transform the last line into one involving the function ϕ0 it suffices to integrate with
respect to x, e.g.,

∫
E
φx(α + h)dµ(x) = ϕ0(α + h). The gradient of ϕ0 appears if we

can justify the equality∫
E

⟨1x ̸=α
α− x

∥α− x∥ , h⟩dµ(x) = ⟨
∫
E

1x ̸=α
α− x

∥α− x∥dµ(x), h⟩ , (4.39)

where an E-valued function is integrated in the right-hand side. To make sense of
such an integral we employ the theory of Bochner integration [75, Section II.2]. We let
f : E → E be the function x 7→ 1x ̸=α

α−x
∥α−x∥ : f is Borel measurable, with separable range

since E is assumed separable. By Pettis’s measurability theorem, f is µ-measurable
(see [75, Section II.1]). Additionally, ∥f∥ is integrable in the usual sense, thus f is
Bochner integrable. With T the bounded operator T : u 7→ ⟨u, h⟩, a standard property
of Bochner integration yields∫

E

(T ◦ f)(x)dµ(x) = T
(∫

E

f(x)dµ(x)
)
,

which is exactly Equation (4.39). Replacing x with X(ω) and integrating the functions

ω 7→ 1X(ω) ̸=α
α−X(ω)

∥α−X(ω)∥ , ω 7→ 1X(ω)̸=α+h
α + h−X(ω)

∥α + h−X(ω)∥

in the Bochner sense (which is licit by the same arguments as above), we obtain

0 ≤ ϕ0(α+h)−ϕ0(α)−⟨E
[
1X ̸=α

α−X

∥α−X∥
]
, h⟩ ≤ ⟨E

[
1X ̸=α+h

α + h−X

∥α + h−X∥
]
−E
[
1X ̸=α

α−X

∥α−X∥
]
, h⟩

(4.40)
where the expectations denote Bochner integrals. We are now ready to prove each item
of Proposition 4.64.

1. We assume that α is not an atom of µ, i.e., µ({α}) = P(X = α) = 0. To
establish Fréchet differentiability of ϕ0 at α, it suffices by (4.40) to show that

E
[
1X ̸=α+h

α + h−X

∥α + h−X∥
]
− E

[
1X ̸=α

α−X

∥α−X∥
]
−−−−→
∥h∥→0

0. (4.41)
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We consider any sequence (hn)n≥1 such that ∥hn∥ → 0 and we note that the following
convergence holds in the norm topology of E, for each x in E \{α} (hence for µ-almost
every x by the initial assumption):

1x ̸=α+hn

α + hn − x

∥α + hn − x∥ −−−→
n→∞

1x ̸=α
α− x

∥α− x∥ .

By the dominated convergence theorem for Bochner integrals we obtain (4.41) and we
can conclude that ϕ0 is differentiable at α with gradient

∇ϕ0(α) = E
[
1X ̸=α

α−X

∥α−X∥
]
,

hence so is ϕ with gradient ∇ϕ(α) = ∇ϕ0(α)− ℓ.
Conversely, we assume that ϕ is Fréchet differentiable at α0 ∈ E. In that case, ϕ0

is also differentiable at α0. If µ({α0}) = 1, then µ is the Dirac measure δα0 and ϕ0 is
simply the function α 7→ ∥α − α0∥ − ∥α0∥, which is not differentiable at α0, hence we
must have µ({α0}) < 1. Assume for the sake of contradiction that µ({α0}) > 0 and
define the probability measure ν = (1 − µ({α0}))−1(µ − µ({α0})δα0), as well as the
corresponding objective function

ϕ0,ν : α 7→ 1

1− µ({α0})
ϕ0(α)−

µ({α0})
1− µ({α0})

(∥α− α0∥ − ∥α0∥).

By construction ν({α0}) = 0 hence ϕ0,ν is differentiable at α0. Since additionally ϕ0 is
Fréchet differentiable at α0 and µ({α0}) > 0, we obtain by subtracting and scaling that
the function α 7→ ∥α − α0∥ is Fréchet differentiable at α0, which is absurd. Therefore
µ({α0}) = 0.

2. We assume that E[∥X − α∥−1] <∞. and we define the function

g : E → B(E)

x 7→ 1x̸=α∇2N(α− x) = 1x ̸=α
1

∥α− x∥
(
Id−(α− x)⊗ (α− x)

∥α− x∥2
)

where B(E) is the Banach space of bounded operators on E equipped with the operator
norm ∥·∥op. We check next that g is indeed Bochner integrable by making use of the
decomposition g = g1 + g2 where

g1 : x 7→ 1x ̸=α
1

∥α− x∥ Id and g2 : x 7→ 1x ̸=α
(α− x)⊗ (α− x)

∥α− x∥3 .

g1 is Borel measurable and range(g1) is a subset of the line spanned by Id, hence
range(g1) is a separable subset of B(E). By Pettis’s measurability theorem, g1 is µ-
measurable. Moreover ∥g1∥op is integrable in the usual sense, hence g1 is Bochner
integrable. The function h : E → B(E), z 7→ z⊗z is continuous by the straightforward
estimate

∥h(z)− h(z0)∥op ≤ (∥z∥+ ∥z0∥)∥z − z0∥ for every (z, z0) ∈ E2,
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and the Borel measurability of g2 easily follows. Since g2(x) has rank at most 1 for
each x, the function g2 takes values in S2(E), the Hilbert space of Hilbert–Schmidt
operators on E. Since E is separable, S2(E) is separable w.r.t. the Hilbert–Schmidt
norm ∥·∥2 [68, Theorem 18.14 (c)]. This norm verifies [189, Corollary 16.9]

∥A∥op ≤ ∥A∥2 for any A ∈ S2(E), (4.42)

hence S2(E) is a separable subset of B(E), and so is range(g2). We have ∥h(z)∥op =
∥z∥2 thus ∥g2(x)∥op = 1x ̸=α

1
∥α−x∥ and ∥g2∥op is Lebesgue integrable, hence g2 is Bochner

integrable and so is g. Replacing x with X(ω) and repeating the same arguments we
find that

ω 7→ 1X(ω)̸=α∇2N(α−X(ω))

is Bochner integrable and it follows that H is well-defined and H ∈ B(E). Since
Bochner integrals and bounded operators commute, we have for every (h1, h2) ∈ E2

that

⟨Hh1, h2⟩ = E
[
1X ̸=α

1

∥α−X∥
(
⟨h1, h2⟩ −

⟨h1, α−X⟩⟨h2, α−X⟩
∥α−X∥2

)]
= ⟨h1, Hh2⟩,

and
⟨Hh1, h1⟩ = E

[
1X ̸=α

1

∥α−X∥
(
∥h1∥2 −

⟨h1, α−X⟩2
∥α−X∥2

)]
.

By Cauchy–Schwarz inequality, 1X ̸=α(∥h1∥2 − ⟨h1,α−X⟩2
∥α−X∥2 ) ≥ 0, hence ⟨Hh1, h1⟩ ≥ 0.

Regarding the Taylor expansion,

ϕ(α + h)− ϕ(α)− ⟨∇ϕ(α), h⟩ − 1

2
⟨Hh, h⟩

= E
[
1X ̸=α

(
∥α + h−X∥ − ∥α−X∥ − ⟨∇N(α−X), h⟩ − 1

2
⟨∇2N(α−X)h, h⟩

)]
+ E[1X=α∥h∥]

≤ E
[ ∥h∥2
∥α−X∥ ∧ ∥h∥3

∥α−X∥2
]

= ∥h∥2
(
E
[
1∥X−α∥≤∥h∥

1

∥X − α∥
]
+ E

[
1∥X−α∥>∥h∥

∥h∥
∥X − α∥2

])
,

where the inequality stems from Lemma 4.62 and P(X = α) = 0. To finish the proof
it suffices to show that each expectation in the last line converges to 0 as h goes to 0.
This follows from the dominated convergence theorem; for the second expectation, we
have the domination

1∥X−α∥>∥h∥
∥h∥

∥X − α∥2 =
1

∥h∥1∥X−α∥>∥h∥
∥h∥2

∥X − α∥2 ≤ 1

∥h∥1∥X−α∥>∥h∥
∥h∥

∥X − α∥
≤ 1

∥X − α∥ .
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3. We assume additionally that µ is in M∼. The real number E
[
1X ̸=α

1
∥α−X∥

]
is

nonzero and the operator H rewrites as a nonzero multiple of

Id−E
[
1X ̸=α

1

∥α−X∥
]−1

E
[
1X ̸=α

(α−X)⊗ (α−X)

∥α−X∥3
]
.

By Neumann series [189, Lemma 17.2], invertibility of H follows if we prove the in-
equality ∥∥∥E[1X ̸=α

1

∥α−X∥
]−1

E
[
1X ̸=α

(α−X)⊗ (α−X)

∥α−X∥3
]∥∥∥

op
< 1,

or equivalently

∥A∥op < E
[
1Y ̸=0

1

∥Y ∥
]
, (4.43)

where we let Y = α−X and A = E
[
1Y ̸=0

Y⊗Y
∥Y ∥3

]
. A straightforward computation shows

that the operator A is self-adjoint and nonnegative, thus by [189, Lemma 11.13] its
operator norm rewrites as

∥A∥op = sup
∥h∥=1

⟨Ah, h⟩ = sup
∥h∥=1

E
[
1Y ̸=0

⟨Y, h⟩2
∥Y ∥3

]
,

and there exists (hn)n≥1 a sequence of unit vectors such that

E
[
1Y ̸=0

⟨Y, hn⟩2
∥Y ∥3

]
−−−→
n→∞

∥A∥op.

Reflexivity of E and the Eberlein–Šmulian theorem [7, Theorems 6.25 and 6.34] imply
the existence of a subsequence (hnk

)k≥1 that converges in the weak topology of E to
some h̃ ∈ E. Since the norm is weakly lower semicontinuous, we have further ∥h̃∥ ≤ 1.
Applying the dominated convergence theorem along the subsequence, we obtain the
additional convergence

E
[
1Y ̸=0

⟨Y, hnk
⟩2

∥Y ∥3
]
−−−→
k→∞

E
[
1Y ̸=0

⟨Y, h̃⟩2
∥Y ∥3

]
.

Identifying the limits, applying Cauchy–Schwarz inequality and the bound ∥h̃∥ ≤ 1,
we have

∥A∥op = E
[
1Y ̸=0

⟨Y, h̃⟩2
∥Y ∥3

] (i)

≤ E
[
1Y ̸=0

1

∥Y ∥
]
.

Assume for the sake of contradiction that equality occurs in (i). By Cauchy–Schwarz
the random variable

1Y ̸=0
1

∥Y ∥
(
1− ⟨ Y

∥Y ∥ , h̃⟩
2
)

is nonnegative, and since it has expectation zero, we must have ⟨1Y ̸=0
Y

∥Y ∥ , h̃⟩2 = 1

P-almost surely. This implies equality in Cauchy–Schwarz, hence 1Y ̸=0
Y

∥Y ∥ and h̃ are
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proportional P-almost surely, thus P(X ∈ α+Rh̃) = P(Y ∈ Rh̃) = 1, which contradicts
the assumption µ ∈ M∼. Inequality (i) is therefore strict and we have proved (4.43).

Since E is Banach, the bounded inverse theorem [159, Theorem 4.12-2] implies that
the inverse operator H−1 is bounded. That H−1 is self-adjoint and nonnegative follows
easily from these two properties being true for H.

Lastly, we let [·, ·] denote the bilinear form [h1, h2] = ⟨Hh1, h2⟩ which is symmetric
and nonnegative (an equivalent terminology is positive semidefinite) by the second item
of Proposition 4.64. As a consequence, [·, ·] satisfies the following Schwarz inequality
[159, Problem 14 p.195]:

[h1, h2]
2 ≤ [h1, h1][h2, h2].

The next chain of inequalities holds:

∥h∥2 = [H−1h, h] ≤ [H−1h,H−1h]1/2 [h, h]1/2

= ⟨h,H−1h⟩1/2 ⟨Hh, h⟩1/2

≤ ∥h∥∥H−1∥1/2op ⟨Hh, h⟩1/2,

where the first (resp., second) inequality stems from the Schwarz (resp., Cauchy–
Schwarz) inequality. Assuming h is nonzero, we obtain by rearranging that

⟨Hh, h⟩ ≥ 1

∥H−1∥op
∥h∥2,

hence
inf

∥h∥=1
⟨Hh, h⟩ ≥ 1

∥H−1∥op
> 0.

4. We assume α has a neighborhood U that does not contain any atom. For h so
small that α + h lies in U we have

∥∇ϕ(α + h)−∇ϕ(α)− E[1X ̸=α∇2N(α−X)h]∥
(i)
=
∥∥∥E[1X/∈{α,α+h}

(
∇N(α + h−X)−∇N(α−X)−∇2N(α−X)h

)]∥∥∥
≤ E

[∥∥∥1X/∈{α,α+h}
(
∇N(α + h−X)−∇N(α−X)−∇2N(α−X)h

)∥∥∥]
(ii)

≤ 2E
[ ∥h∥
∥α−X∥ ∧ ∥h∥2

∥α−X∥2
]

= 2∥h∥
(
E
[
1∥X−α∥≤∥h∥

1

∥X − α∥
]
+ E

[
1∥X−α∥>∥h∥

∥h∥
∥X − α∥2

])
. (4.44)

Since α and α+h are not atoms of µ, the random variable 1X∈{α,α+h} is P-almost surely
zero, thus in (i) we omit the expectation involving this indicator. Inequality (ii) follows
from Lemma 4.62. As shown in item 2. above, each expectation in (4.44) goes to 0 as
h goes to 0. We thus obtain ∥∇ϕ(α+ h)−∇ϕ(α)− E[1X ̸=α∇2N(α−X)h]∥ = o(∥h∥)
and ϕ is twice differentiable at α.

To identify the Hessian operator we need the equality

E[1X ̸=α∇2N(α−X)h] = E[1X ̸=α∇2N(α−X)]h. (4.45)
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Equality (4.45) is then justified by considering the evaluation operator T : B(E) →
E,A 7→ Ah and we can finally conclude that

∇2ϕ(α) = E[1X ̸=α∇2N(α−X)]

= E
[
1X ̸=α

1

∥α−X∥
(
Id−(α−X)⊗ (α−X)

∥α−X∥2
)]
.

4.10.2 Proofs for Section 4.5.1

Proof of Proposition 4.70. 1. For any β ∈ E, Ψ̂n is twice differentiable at β with
Hessian ∇2ϕ(α⋆)/n, which is nonnegative by Proposition 4.64, hence Ψ̂n is convex.
The vector β̂n is the unique zero of the gradient ∇Ψ̂n(β), hence the unique minimizer
of Ψ̂n.

2. α⋆ is a minimizer of ϕ, which is differentiable at α⋆ by the moment assumption
and Proposition 4.64. Consequently, ∇ϕ(α⋆) = 0 or equivalently the random element
Y = 1X ̸=α⋆

α⋆−X
∥α⋆−X∥ − ℓ is centered, hence so is ∇2ϕ(α⋆)

−1Y . Since E is separable and

β̂n = − 1√
n

n∑
i=1

∇2ϕ(α⋆)
−1
(
1Xi ̸=α⋆

α⋆ −Xi

∥α⋆ −Xi∥
− ℓ
)
,

the central limit theorem for Hilbert spaces [168, Section 10.1] yields convergence in
distribution to a centered Gaussian with covariance bilinear form Σ such that for every
(u, v) ∈ E,

Σ(u, v) = E
[
⟨u,∇2ϕ(α⋆)

−1Y ⟩⟨v,∇2ϕ(α⋆)
−1Y ⟩

]
= E

[
⟨∇2ϕ(α⋆)

−1u, Y ⟩⟨∇2ϕ(α⋆)
−1v, Y ⟩

]
= E

[
⟨∇2ϕ(α⋆)

−1u, (Y ⊗ Y )∇2ϕ(α⋆)
−1v⟩

]
= ⟨∇2ϕ(α⋆)

−1u,E[Y ⊗ Y ]∇2ϕ(α⋆)
−1v⟩

= ⟨u,
[
∇2ϕ(α⋆)

−1E
[
1X ̸=α⋆(

α⋆−X
∥α⋆−X∥ − ℓ)⊗ ( α⋆−X

∥α⋆−X∥ − ℓ)
]
∇2ϕ(α⋆)

−1
]
v⟩.

This identifies the covariance operator.
By [39, Theorem 2.3.6], (β̂n) is uniformly tight and since compact sets are bounded,

β̂n = OP(1).
3. By definition of κ, the function β 7→ nΨ̂n(β) − κ/2∥β∥2 is convex, hence Ψ̂n is

κ/n-strongly convex and the inequality follows.

We state a technical lemma of independent interest that will be useful in the proof
of Proposition 4.71.

Lemma 4.91. Let Y1, Y2, . . . be i.i.d. nonnegative random variables such that E[Y1] <
∞.

1. 1
n

∑n
i=1 1Yi≥

√
nYi converges P-almost surely to 0.
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2. Let R > 0. The supremum

sup
ρ≥

√
n

R

1

ρ3

n∑
i=1

1Yi<ρY
2
i

converges P-almost surely to 0.

Proof of Lemma 4.91. 1. For each integer N ≥ 1, the strong law of large num-
bers yields the convergence 1

n

∑n
i=1 1Yi≥

√
NYi →n E[1Y1≥

√
NY1] on an event ΩN with

P(ΩN) = 1. Given N ≥ 1 and n ≥ N we have

0 ≤ 1

n

n∑
i=1

1Yi≥
√
nYi ≤

1

n

n∑
i=1

1Yi≥
√
NYi.

On the almost-sure event
⋂

N≥1ΩN we obtain

∀N ≥ 1, lim sup
n

( 1
n

n∑
i=1

1Yi≥
√
nYi

)
≤ E[1Y1≥

√
NY1].

By the dominated convergence theorem, E[1Y1≥
√
NY1] → 0 as N → ∞, hence the claim.

2. The following proof is adapted from [213]. The convergence 1
n

∑n
i=1 Yi → E[Y1]

happens on an event Ω0 and for each integer M ≥ 1 we have 1
n

∑n
i=1 1Yi≥MYi →n

E[1Y1≥MY1] on an event ΩM with P(ΩM) = 1. In the rest of the proof we consider
ω ∈ ⋂M≥0ΩM and we prove (the dependence on ω is omitted):

sup
ρ≥

√
n

R

1

ρ3

n∑
i=1

1Yi<ρY
2
i −−−→

n→∞
0.

Let ϵ > 0 and fix some M ≥ 1 that satisfies E[1Y1≥MY1] < ϵ/2. Note that

sup
ρ≥

√
n

R

1

ρ3

n∑
i=1

1Yi<ρY
2
i ≤ sup

ρ≥
√
n

R

( 1

ρ3

n∑
i=1

1M≤Yi<ρY
2
i

)
+ sup

ρ≥
√

n
R

( 1

ρ3

n∑
i=1

1Yi<MY
2
i

)
. (4.46)

We bound each supremum in the right-hand side of (4.46) separately. Given ρ ≥
√
n

R
,

1

ρ3

n∑
i=1

1M≤Yi<ρY
2
i ≤ 1

ρ2

n∑
i=1

1M≤Yi<ρYi ≤ R2 1

n

n∑
i=1

1Yi≥MYi. (4.47)

By the hypothesis on ω, there exists N ≥ 1 such that

n ≥ N =⇒ 1

n

n∑
i=1

1Yi≥MYi − E[1Y1≥MY1] ≤ ϵ/2. (4.48)

Combining (4.47) and (4.48), we have

n ≥ N =⇒ sup
ρ≥

√
n

R

( 1

ρ3

n∑
i=1

1M≤Yi<ρY
2
i

)
< R2ϵ.
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Regarding the remaining supremum in the right-hand side of (4.46), it is estimated as
follows:

sup
ρ≥

√
n

R

( 1

ρ3

n∑
i=1

1Yi<MY
2
i

)
≤ R3M

n3/2

n∑
i=1

Yi =
R3M√
n

1

n

n∑
i=1

Yi,

which is easily < ϵ for n large enough.

Proof of Proposition 4.71. The suprema we consider below are measurable. We make
use of the decomposition

ψ̂n(β)− Ψ̂n(β) = ∆1(β) + ∆2(β),

where

∆1(β) = ϕ̂n

(
α⋆ +

β√
n

)
− ϕ̂n(α⋆)− ⟨∇ϕ̂n(α⋆),

β√
n
⟩ − 1

2
⟨∇2ϕ̂n(α⋆)

β√
n
, β√

n
⟩,

∆2(β) =
1
2
⟨
(
∇2ϕ̂n(α⋆)−∇2ϕ(α⋆)

)
β√
n
, β√

n
⟩.

1. We assume E[∥X−α⋆∥−1] <∞. The first item of Lemma 4.62 yields the bound:

n|∆1(β)| =
∣∣∣ n∑
i=1

∥α⋆ −Xi +
β√
n
∥ − ∥α⋆ −Xi∥

− ⟨1Xi ̸=α⋆∇N(α⋆ −Xi),
β√
n
⟩ − 1

2
⟨1Xi ̸=α⋆∇2N(α⋆ −Xi)

β√
n
, β√

n
⟩
∣∣∣

≤ 1

2

n∑
i=1

1Xi ̸=α⋆

( ∥β/√n∥2
∥Xi − α⋆∥

∧ ∥β/√n∥3
∥Xi − α⋆∥2

)
+

n∑
i=1

1Xi=α⋆

∥∥∥ β√
n

∥∥∥
= Sn(β) + Tn(β) +

n∑
i=1

1Xi=α⋆

∥∥∥ β√
n

∥∥∥, (4.49)

where

Sn(β) =
1

2

n∑
i=1

1Xi ̸=α⋆1∥Xi−α⋆∥≤∥ β√
n
∥
∥β/√n∥2
∥Xi − α⋆∥

,

Tn(β) =
1

2

n∑
i=1

1Xi ̸=α⋆1∥Xi−α⋆∥>∥ β√
n
∥
∥β/√n∥3
∥Xi − α⋆∥2

.

Moreover, if ∥β∥ ≤ R, we have Sn(β) ≤ R2

2n

∑n
i=1 1Xi ̸=α⋆1∥Xi−α⋆∥≤ R√

n

1
∥Xi−α⋆∥ . The first

item of Lemma 4.91 applied with Yi = 1Xi ̸=α⋆

R
∥Xi−α⋆∥ yields

sup
∥β∥≤R

Sn(β) →n 0 a.s.

Next, we observe that

sup
∥β∥≤R

Tn(β) = sup
r∈(0,R]

1

2

n∑
i=1

1Xi ̸=α⋆1∥Xi−α⋆∥> r√
n

(r/
√
n)3

∥Xi − α⋆∥2

= sup
ρ≥

√
n

R

n∑
i=1

1Xi ̸=α⋆1∥Xi−α⋆∥−1<ρ

∥Xi − α⋆∥−2

ρ3
,
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and the second item of Lemma 4.91 gives

sup
∥β∥≤R

Tn(β) →n 0 a.s.

Since α⋆ is not an atom of µ, the sum in (4.49) is zero P-almost surely, hence

n sup
∥β∥≤R

|∆1(β)| →n 0 a.s.

To deal with ∆2 we note that

n sup
∥β∥≤R

|∆2(β)| ≤
R2

2
∥∇2ϕ̂n(α⋆)−∇2ϕ(α⋆)∥op

and we leverage the decomposition

∇2ϕ̂n(α⋆)−∇2ϕ(α⋆) = A−B (4.50)

where

A =
( 1
n

n∑
i=1

1Xi ̸=α⋆

1

∥Xi − α⋆∥
− E

[
1X ̸=α⋆

1

∥X − α⋆∥
])

Id,

B =
1

n

n∑
i=1

1Xi ̸=α⋆

(α⋆ −Xi)⊗ (α⋆ −Xi)

∥Xi − α⋆∥3
− E

[
1X ̸=α⋆

(α⋆ −X)⊗ (α⋆ −X)

∥X − α⋆∥3
]
.

Since ∥A∥op =
∣∣∣ 1n∑n

i=1 1Xi ̸=α⋆

1
∥Xi−α⋆∥ − E

[
1X ̸=α⋆

1
∥X−α⋆∥

]∣∣∣, the strong law of large
numbers yields ∥A∥op →n 0 P-almost surely. Since the operator z ⊗ z has rank at
most one, it is a Hilbert–Schmidt operator. Consequently, B takes values in the space
S2(E), which we equip with the norm ∥·∥2. The function f : E → S2(E), z 7→ z ⊗ z is
continuous by the estimate

∥f(z)− f(z0)∥22 = ∥f(z)∥22 + ∥f(z0)∥22 − 2⟨f(z), f(z0)⟩2
= ∥z∥4 + ∥z0∥4 − 2⟨z, z0⟩2,

hence B is measurable between the σ-algebras F and B(S2(E)). The space S2(E) is
separable [68, Theorem 18.14 (c)], thus by Mourier’s strong law of large numbers for
Banach spaces [168, Corollary 7.10] we have the convergence ∥B∥2 →n 0 P-almost
surely. By inequality (4.42), ∥B∥op →n 0 P-almost surely. Combining the convergence
on A and B, we have

n sup
∥β∥≤R

|∆2(β)| →n 0 a.s.,

and this finishes the proof.
2. We assume E[∥X−α⋆∥−2] <∞ and we follow a similar path. Instead of (4.49), we

bound the minimum directly by ∥β/√n∥3
∥Xi−α⋆∥2 and we use the central limit theorem to obtain

n sup∥β∥≤R |∆1(β)| = OP(n
−1/2). Regarding ∆2, we exploit the same decomposition

(4.50). Since we assume a finite second moment for ∥X − α⋆∥−1, we can leverage the
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central limit theorem which yields ∥A∥op = OP(n
−1/2). By the central limit theorem

for Hilbert spaces [168, Section 10.1], ∥B∥2 = OP(n
−1/2) thus ∥B∥op = OP(n

−1/2).
Regarding the difference ∇ψ̂n −∇Ψ̂n, we use the decomposition

∇ψ̂n(β)−∇Ψ̂n(β) = D1(β) +D2(β),

where

D1(β) =
1√
n
∇ϕ̂n(α⋆ +

β√
n
)− 1√

n
∇ϕ̂n(α⋆)−∇2ϕ̂n(α⋆)

β
n
,

D2(β) =
(
∇2ϕ̂n(α⋆)−∇2ϕ(α⋆)

)
β
n
.

For β such that 0 < ∥β∥ ≤ R, the second item of Lemma 4.62 gives

n3/2|D1(β)| =
∣∣∣ n∑
i=1

1Xi /∈{α⋆,α⋆+
β√
n
}

(
∇N(α⋆ −Xi +

β√
n
)−∇N(α⋆ −Xi)−∇2N(α⋆ −Xi)

β√
n

)
+

n∑
i=1

1Xi=α⋆∇N( β√
n
) +

n∑
i=1

1
Xi=α⋆+

β√
n

∇N( β√
n
)
∣∣∣

≤ 2
n∑

i=1

1Xi ̸=α⋆

∥β/√n∥2
∥Xi − α⋆∥2

+
n∑

i=1

1Xi=α⋆ +
n∑

i=1

1
Xi=α⋆+

β√
n

≤ 2R2

n

n∑
i=1

1Xi ̸=α⋆

1

∥Xi − α⋆∥2
+

n∑
i=1

1Xi=α⋆ +
n∑

i=1

1
Xi=α⋆+

β√
n

,

hence

sup
∥β∥≤R

n3/2|D1(β)| ≤
2R2

n

n∑
i=1

1Xi ̸=α⋆

∥Xi − α⋆∥2
+

n∑
i=1

1Xi=α⋆ + sup
∥β∥≤R

n∑
i=1

1
Xi=α⋆+

β√
n

. (4.51)

In the right-hand side of (4.51), the first summand is OP(1) by the strong law of
large numbers. Since α⋆ is not an atom of µ, the second summand is zero P-almost
surely, hence OP(1). The last supremum requires more work and we write Sn =
sup∥β∥≤R

∑n
i=1 1Xi=α⋆+

β√
n

for convenience. Given a fixed k ∈ {1, . . . , n}, if Sn ≥ k

there is some β with ∥β∥ ≤ R such that at least k of the Xi are equal to α⋆ +
β√
n
.

Therefore, each of these verifies ∥Xi − α⋆∥−1 ≥
√
n

R
. By this observation we have the

bound

P(Sn ≥ k) ≤ P
( ⋃

I⊂{1,...,n}
|I|=k

⋂
i∈I

{∥Xi − α⋆∥−1 ≥
√
n

R
}
)

(i)

≤
(
n

k

)[
P(∥X1 − α⋆∥−1 ≥

√
n

R
)
]k

=

(
n

k

)
pkn ,

where pn = P(∥X1 − α⋆∥−1 ≥
√
n

R
). To obtain (i) we used the union bound and

independence of the Xi. Since ∥Xi − α⋆∥−1 has finite second moment, we have the
estimate pn = o(1/n), thus E[Sn] =

∑n
k=1 P(Sn ≥ k) ≤ (1 + pn)

n = (1 + o(n−1))n =
1+o(1). Consequently, E[Sn] is bounded and Sn = OP(1). Inequality (4.51) then yields
sup∥β∥≤R n

3/2|D1(β)| = OP(1). We obtain sup∥β∥≤R n
3/2|D2(β)| = OP(1) by identical

bounds on ∥A∥op and ∥B∥op as above.
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Proof of Theorem 4.73. 1. Let ε, η > 0. By Proposition 4.70, β̂n = OP(1) so there
exists M1 > 0 such that P(∥β̂n∥ > M1) < η/3 for every n ≥ 1. By Proposition 4.71
and the convergence assumption on ϵn, there is some N ≥ 1 such that for every n ≥ N ,

P
(

sup
∥β∥≤M1+ε

|ψ̂n(β)− Ψ̂n(β)| >
κε2

8n

)
< η/3 and P∗

(
ϵn >

κε2

8n

)
< η/3.

We let Ωn = {∥β̂n∥ ≤M1} ∩ {sup∥β∥≤M1+ε |ψ̂n(β)− Ψ̂n(β)| ≤ κε2

8n
} ∩ {ϵn ≤ κε2

8n
} and S

denotes the sphere centered at β̂n with radius ε. For n ≥ N , for ω ∈ Ωn (ω is implicit
in what follows) and β ∈ S we have the lower bound

ψ̂n(β)
(i)

≥ Ψ̂n(β)−
κε2

8n

(ii)

≥ Ψ̂n(β) +
κε2

2n
− κε2

8n
≥ ψ̂n(β̂n) +

κε2

2n
− κε2

4n

= ψ̂n(β̂n) +
κε2

4n

> ψ̂n(β̂n) + ϵn, (4.52)

where (i) follows from ∥β∥ ≤M1 + ε and (ii) from the third item of Proposition 4.70.
Inequality (4.52) implies that the ϵn-argmin of ψ̂n is a subset of the closed ball centered
at β̂n with radius ε. Otherwise, there exists β an ϵn-minimizer of ψ̂n such that ∥β −
β̂n∥ > ε and we can find λ ∈ [0, 1] satisfying (1 − λ)β + λβ̂n ∈ S. Thus by convexity
of ψ̂n,

ψ̂n((1− λ)β + λβ̂n) ≤ (1− λ)ψ̂n(β) + λψ̂n(β̂n) ≤ (1− λ)(ϵn + inf ψ̂n) + λψ̂n(β̂n)

≤ ϵn + ψ̂n(β̂n),

which contradicts (4.52).
Since

√
n(α̂n − α⋆) is an ϵn-minimizer of ψ̂n, we obtain

P∗(∥√n(α̂n − α⋆)− β̂n∥ > ε
)
≤ P∗(Ωc

n) < η for every n ≥ N,

hence the claim.
2. Let ε > 0. By Proposition 4.70, β̂n = OP(1) so there exists M1 > 0 such that

P(∥β̂n∥ > M1) < ϵ/3 for every n ≥ 1. By Proposition 4.71, there is some M2 > 0 such
that ∀n ≥ 1,P

(
sup∥β∥≤M1+1 |ψ̂n(β) − Ψ̂n(β)| > M2

2n3/2

)
< ε/3. We define the radius

rn = 2(M2/κ)
1/2n−1/4. For n larger than some N we have the bounds

P∗
(
ϵn >

M2

2n3/2

)
< ε/3 and rn ≤ 1.

We let Ωn = {∥β̂n∥ ≤M1} ∩ {sup∥β∥≤M1+1 |ψ̂n(β)− Ψ̂n(β)| ≤ M2

2n3/2} ∩ {ϵn ≤ M2

2n3/2} and
S denotes the sphere centered at β̂n with radius rn.

By arguments similar to those developed in the previous item, we obtain

P∗(∥√n(α̂n − α⋆)∥ > rn
)
≤ P∗(Ωc

n) < ε for every n ≥ N,
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hence the claim.
3. Let ε > 0. There exists M1 > 0 such that P(∥β̂n∥ > M1) < ϵ/3 for every n ≥ 1.

By Proposition 4.71, there is some M2 > 0 such that

∀n ≥ 1,P
(

sup
∥β∥≤M1+1

|∇ψ̂n(β)−∇Ψ̂n(β)| > M2

n3/2

)
< ε/3.

We let rn = (2M2/κ)n
−1/2 and sn = (M2/κ)n

−1/2. There is some N ≥ 1 such that

n ≥ N =⇒ P∗
(
ϵn >

M2
2

2κn2

)
< ε/3 and rn ≤ 1.

We put Ωn = {∥β̂n∥ > M1} ∩ {sup∥β∥≤M1+1 |∇ψ̂n(β)−∇Ψ̂n(β)| ≤ M2

n3/2} ∩ {ϵn ≤ M2
2

2κn2}.
We fix n ≥ N , ω ∈ Ωn (ω is implicit in what follows), a unit vector a ∈ E and we
define the convex function

γ̂n : R → R

t 7→ ψ̂n(β̂n + ta).

The quantity gn = ⟨∇ψ̂n(β̂n + rna), a⟩ verifies the estimate

gn ≥ ⟨∇Ψ̂n(β̂n + rna), a⟩ −
M2

n3/2
=
rn
n
⟨∇2ϕ(α⋆)a, a⟩ −

M2

n3/2
≥ M2

n3/2

and it is in the subdifferential of γ̂n at rn, thus

∀t ≥ rn + sn, γ̂n(t) ≥ γ̂n(rn) + gn(t− rn)

≥ inf(γ̂n) + ϵn + gnsn − ϵn

≥ inf(γ̂n) + ϵn +
M2

2

κn2
− ϵn

> inf(γ̂n) + ϵn.

Since the inequality holds uniformly on the unit vector a, ϵn-minimizers of ψ̂n lie in
the open ball centered at β̂n with radius rn + sn = (3M2/κ)n

−1/2 and we conclude as
before.

Proof of Theorem 4.77. We use the theory developed by Van der Vaart and Wellner
[261, Chapter 1.3] to make sense of convergence in distribution for nonmeasurable
maps. By Proposition 4.70, the Borel measurable random element β̂n converges in
distribution to γ, the Gaussian measure with mean 0 and covariance operator Σ. The
first item of Theorem 4.73 combined with [261, Lemma 1.10.2] and Slutsky’s theorem
[261, p.32] yields convergence in distribution of

√
n(α̂n − α⋆) to γ.
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Chapter 5

Convex Fréchet ℓ-means in a metric
tree

5.1 Introduction

5.1.1 Context

Statisticians commonly model data as an i.i.d. sample from an unknown probability
measure µ. There is much interest in the central tendency of µ, i.e., in defining a loca-
tion parameter that is representative of the whole population, and then in estimating
this location parameter. When the ambient space is Rd, a prominent measure of central
tendency is the mean

∫
Rd x dµ(x) (provided µ has one moment) and an estimator is the

sample mean 1
n

∑n
i=1Xi, where X1, X2, . . . are i.i.d. random vectors with distribution

µ. Fréchet [95] extended the notion of mean to the general setting of metric spaces by
leveraging an optimization problem. Given a metric space (E, d) and a Borel probabil-
ity measure µ on E, one says that µ has k finite moments, k ≥ 1, if

∫
E
d(α, x)k dµ(x)

is finite, for some (and hence, every) α ∈ E. If µ has two finite moments, a Fréchet
mean (or barycenter) of µ is a minimizer of the objective function

E → R (5.1)

α 7→
∫
E

d(α, x)2 dµ(x).

In fact, the definition of a Fréchet mean of µ only requires a finite first moment, since
the objective function can be replaced with α 7→

∫
E
(d(α, x)2 − d(α0, x)

2) dµ(x) for
some arbitrary α0 ∈ E, and the definition will not be affected by the choice of α0. In
many settings the Fréchet mean α⋆ exists and is unique [243, 3, 4, 202, 273].

A natural estimator of α⋆ is the sample Fréchet mean α̂n obtained by minimizing the
sample objective α 7→ 1

n

∑n
i=1 d(α,Xi)

2. Laws of large numbers for (α̂n)n≥1 hold under
a variety of assumptions on the space E [286, 33, 243] and central limit theorems have
been developed when E is a Riemannian manifold [34, 31, 32, 87]. Non-Euclideanity
of the space allows for new asymptotic phenomena such as stickiness [126, 136] and
smeariness [125, 86, 85]. The non-asymptotic properties of the estimator have attracted
much attention recently [230, 5, 167, 276, 49, 88].
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Except for laws of large numbers [137] and Riemannian central limit theorems [48],
these statistical results and their proofs are specific to the Fréchet mean, i.e., they
are tied to the objective function (5.1). Still, other measures of central tendency are
of interest. In the simplest setting of the real line R, a major shortcoming of the
sample mean is its lack of robustness to outliers, hence the need for alternatives such
as the median. The population Fréchet median can be defined by replacing the squared
distance in (5.1) with d(α, x). In order to cover a variety of location parameters, we
study more general objectives of the form α 7→

∫
E
ℓ (d(α, x)) dµ(x) where ℓ : [0,∞) →

[0,∞) is a convex nondecreasing function. We refer to minimizers of such an objective
as Fréchet ℓ-means.

In exchange for generality in the objective, we constrain the ambient space to
be a metric tree T , i.e., an undirected connected acyclic graph with weighted edges,
where weights are understood as edge lengths and the distance between two points is
the length of the (unique) shortest path between them. Metric trees arise in real-life
applications, as they are an ideal model for road and communication networks. Tree-
shaped networks appear naturally when modeling rivers or sparsely populated areas.
A distribution system organized around a unique hub may be described as a star-
like network, thus as a tree. In all these settings, the demand for service can occur at
random locations across the network and these locations are distributed according to µ.
Minimizing α 7→

∫
T
d(α, x) dµ(x) is then akin to locating a new facility on the network

with least average travel time to the demand. This median problem was initially
studied in the special case where µ is discrete and supported on the vertices of the
network. It gained traction among the operations research community in the 1960s,
with an emphasis on the development of efficient algorithms (see, e.g., the surveys
[111, 248, 249, 112]). More general objective functions were considered in [235, 44] and
the case of non-discrete µ was studied in [200, 38].

A metric tree is a particular instance of a Hadamard space [45], hence results
for Fréchet means in general Hadamard spaces (e.g., [243, 15, 48, 49, 88]) apply also
to metric trees. There is little statistical literature on Fréchet ℓ-means in the specific
setting of metric trees. Basrak [18] focuses on the Fréchet mean in a binary metric tree,
and he establishes a central limit theorem for the inductive mean (a different estimator
from the sample Fréchet mean). Risser et al. [96, 98] seek to compute Fréchet means
on metric graphs, while Hotz et al. [126] develop laws of large numbers and central
limit theorems for the Fréchet mean when the ambient space is an open book, i.e., a
finite collection of copies of a Euclidean halfspace, glued with each other along their
boundary. A special case of an open book is the m-spider, which can be viewed as a
metric tree with one central vertex and infinitely long edges.

5.1.2 Contributions and outline

The goal of this work is to investigate the statistical properties of Fréchet ℓ-means in
a metric tree T . We describe below how the chapter is organized and we give a brief
summary of our contributions.

• In Section 5.2 we introduce the precise terminology and setting for our study.
By leveraging the geodesic convexity of the objective function (Proposition 5.7)
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and the geometry of the tree (Definition 5.8), we develop a notion of directional
derivatives (Definition 5.10) and we are able to locate (Proposition 5.14) and
characterize (Proposition 5.15) Fréchet ℓ-means according to the signs of these
directional derivatives.

• In Section 5.3 we turn to estimation using a sample analog. We observe that
the topic of consistency is settled (Lemma 5.23) and we extend the notion of
stickiness introduced by Hotz et al. [126] to the metric tree. An arbitrary point
c ∈ T is either sticky, partly sticky or nonsticky according to the signs of direc-
tional derivatives at c (Definition 5.24). We show that empirical stickiness is a
non-asymptotic phenomenon that happens with exponential probability (Theo-
rem 5.27). As an immediate consequence, we obtain a sticky law of large numbers
(Corollary 5.28). Finally, we provide an equivalent definition of stickiness that is
stated in terms of robustness to small pertubations of the population distribution
(Proposition 5.29).

• In Section 5.4 we focus on Fréchet medians, i.e., when ℓ(z) = z. We provide more
specific statements on the location (Proposition 5.32) and uniqueness (Propo-
sition 5.34) of medians. In the partly sticky case, we establish central limit
theorems (Theorems 5.43 and 5.51) and non-asymptotic concentration bounds
(Theorems 5.46 and 5.53).

5.2 Fréchet ℓ-means in a metric tree

5.2.1 Terminology and setting

Let us make precise what we mean by a metric tree and introduce further useful
terminology.

Definition 5.1. 1. Let T denote an undirected, connected, acyclic graph with weighted
edges (in the usual graph-theoretic sense). The weight of an edge is always as-
sumed to be positive and it is understood as the length of this edge, i.e., as the
distance between the corresponding adjacent vertices. We assume additionally
that T has finitely many vertices. We implicitly consider a planar and isometric
embedding of T in R2; T is then equipped with the shortest path metric d: the
distance between two points of T (not necessarily vertices) is the length of the
shortest path between them. Then, (T, d) is a metric space, which is referred to
as a metric tree. In the sequel, we denote by D its diameter and by B(T ) its
Borel σ-algebra.

2. A vertex v ∈ T is a leaf if it has exactly one adjacent vertex.

3. Let m ≥ 2. T is an m-spider if the underlying graph-theoric tree has exactly m
leaves and there is a single vertex adjacent to all of them.

Now, let us define an analog of the Lebesgue measure on (T, d).
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Definition 5.2. Let E be the set of all edges of T . Each edge e ∈ E can be identified
with a segment Se in R of the same length, hence, it inherits its own Lebesgue measure,
denoted by λe. Now, for any A ∈ B(T ), set λ(A) =

∑
e∈E λe(A ∩ e), where A ∩ e is

identified isometrically with a subset of Se.

Next, we introduce some relevant concepts from metric geometry. Given x, y ∈ T ,
a constant speed geodesic from x to y is a map γ from some interval [a, b] ⊂ R to E
such that γ(a) = x, γ(b) = y and d(γ(t1), γ(t2)) = v|t1 − t2| for some v ∈ [0,∞) and
every t1, t2 ∈ [a, b]. If x ̸= y, v = d(x,y)

b−a
is called the speed of the geodesic γ. For the

sake of legibility, we will often write γt in lieu of γ(t). The space (T, d) is uniquely
geodesic, meaning that between any two points x, y ∈ T , there always exists a geodesic
from x to y and that is it unique up to reparametrization. Its image is denoted by
[x, y] and it is referred to as the geodesic segment joining x and y. We also define open
and half-open geodesic intervals (x, y), [x, y), (x, y]: For instance, [x, y) = γ([a, b)) for
some a ≤ b and a geodesic γ from x to y defined on [a, b].

A well-known geometric property of metric trees is that they are CAT(0); see, e.g.,
[45, Example 1.15(5) p.167]. By our assumptions, (T, d) is also compact and complete,
hence it is a compact Hadamard space. In Hadamard spaces it is possible to develop
a theory of convex analysis, convex optimization and probability that generalizes to
nonlinear settings the classical results known in Hilbert spaces [15]. Here, we recall the
definition of geodesic convexity in (T, d).

Definition 5.3. Let (T, d) be a metric tree as above.

1. A subset G ⊂ T is called geodesically convex (convex, for short) if and only if for
all x, y ∈ G [x, y] ⊂ G.

2. A function f : T → R is called geodesically convex (convex, for short) if and
only if for every geodesic γ : [0, 1] → T and t ∈ (0, 1) we have the inequality
f(γt) ≤ (1−t)f(x)+tf(y). We call f geodesically strictly convex (strictly convex,
for short), if and only if the previous inequality is strict, so long as γ0 ̸= γ1.

Definition 5.4. Let (T, d) be a metric tree as above, µ be a probability measure on
(T,B(T )) and ℓ : [0,∞) → [0,∞) be a convex and nondecreasing function, which we
call the loss function. We define the objective function ϕ

ϕ : T → R (5.2)

α 7→
∫
T

ℓ (d(α, x)) dµ(x).

Minimizers of ϕ are called Fréchet ℓ-means of µ, and we denote by M(µ) the set of all
minimizers.

Example 5.5. Examples of loss functions ℓ include:

1. ℓ : z 7→ zp where p ∈ [1,∞). In this setting, the minimizers of ϕ are called
Fréchet p-means of µ. In the case p = 1 they are referred to as Fréchet medians,
and when p = 2 as barycenters or just Fréchet means. The corresponding set of
minimizers will be denoted specifically by Mp(µ).
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2. ℓ : z 7→ z21|z|≤c + (2c|z| − c2)1|z|>c where c ≥ 0. It is known as the Huber loss
[133].

3. ℓ : z 7→ 2c2
(
(1 + z2

c2
)1/2 − 1

)
where c > 0. It is known as the pseudo-Huber loss,

which is a smooth approximation of the standard Huber loss.

The following lemma exhibits basic regularity properties of the loss.

Lemma 5.6. Let ℓ : [0,∞) → [0,∞) be a convex and nondecreasing function.

1. The left-derivative ℓ′− : (0,∞) → [0,∞) and right-derivative ℓ′+ : [0,∞) → [0,∞)
of ℓ exist and are nondecreasing.

2. ℓ is continuous and locally Lipschitz.

3. For every z ∈ [0,∞), ℓ(z) = ℓ(0) +
∫ z

0
ℓ′−(t) dt = ℓ(0) +

∫ z

0
ℓ′+(t) dt.

In the next proposition, we show that the objective ϕ is well-defined and we provide
other foundational properties of ϕ and M(µ).

Proposition 5.7. 1. ϕ is well-defined, continuous and convex.

2. M(µ) is a nonempty, closed and convex subset of T .

3. ℓ is strictly convex if and only if ℓ′+ is increasing. In that case, ϕ is strictly convex
and M(µ) is a singleton.

5.2.2 Convex calculus in a metric tree

The following section is dedicated to locating and characterizing the minimizers of ϕ.
Given a real-valued function f defined on a vector space E, the variations of f with

respect to a reference point α ∈ E and in a direction v ∈ E are naturally assessed
by restricting f to the half-line {α + tv : t ≥ 0} ⊂ E and defining the difference
quotient q : t 7→ f(α+tv)−f(α)

t
where t ∈ (0,∞). If additionally f is convex, then q is

nondecreasing and bounded below; its right-sided limit is the directional derivative of
f at α in the direction v [118, p.238].

In general the metric space T has no linear structure, and a point v ∈ T does not
carry by itself a notion of direction. However the restriction to the half-line in the
difference quotient defined above can be replaced with the restriction to the geodesic
segment [α, v], thus we consider the metric difference quotient

Q : (0, 1] → R (5.3)

t 7→ ϕ(γt)− ϕ(α)

d(γt, α)
,

where γ : [0, 1] → [α, v] denotes the geodesic from α to v. Since d(γt, α) = td(v, α) and
t 7→ ϕ(γt) is convex, Q is nondecreasing and has a right-sided limit at 0 (which we will
see is finite). Before we provide the value of this limit, we need the following definition.
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Definition 5.8. Given α and v two distinct elements of T , we let w1, . . . , wm denote
the leaves of T and we define the subset

Tα→v = (α, v] ∪
⋃

i∈{1,...,m}: α/∈[v,wi]

[v, wi].

Alternatively, the metric space T \{α} has two path-components and Tα→v is the path-
component that contains v. It is also the largest convex subset of T that contains v
but not α.

Figure 5.1 illustrates this definition in two situations: either α is in the interior of
an edge, or α is a vertex of T . We stress that α does not belong to Tα→v.

(a) α is in the interior of an edge (b) α is a vertex

Figure 5.1: Illustration for Definition 5.8 in two cases. Tα→v is drawn in red and
T \ Tα→v is drawn in green.

As shown in the next proposition, the expression for the limit of the metric difference
quotient (5.3) involves the left- and right- derivative of the univariate convex function
ℓ, which already played a role in Lemma 5.6.

Proposition 5.9. Let α and v be two distinct points in T . The following convergence
holds:

ϕ(α′)− ϕ(α)

d(α′, α)
−−−−→
α′→α

α′∈(α,v]

∫
T\Tα→v

ℓ′+(d(α, x)) dµ(x)−
∫
Tα→v

ℓ′−(d(α, x)) dµ(x). (5.4)

Consequently, the metric difference quotient Q(t) converges to this finite limit as t →
0+.

Definition 5.10. We refer to the limiting value in (5.4) as the directional derivative
of ϕ at α towards v and we denote it by ϕ′

v(α).

Remark 5.11. If w is in Tα→v and w ̸= v, we note that Tα→w = Tα→v, thus ϕ′
w(α) =

ϕ′
v(α). The equality between derivatives is expected: if α′ is in (α,w] and sufficiently

close to α, then α′ is in (α, v].

Example 5.12. 1. For Fréchet p-means, p ≥ 1,

ϕ′
v(α) = p

(∫
T\Tα→v

d(α, x)p−1 dµ(x)−
∫
Tα→v

d(α, x)p−1 dµ(x)

)
.
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2. In particular, for Fréchet medians (p = 1 above),

ϕ′
v(α) = µ(T \ Tα→v)− µ(Tα→v)

= 1− 2µ(Tα→v)

= 2µ(T \ Tα→v)− 1.

Remarkably, the directional derivative does not involve the metric d; it is ex-
pressed solely in terms of µ.

Remark 5.13. Assessing the directional derivative of ϕ along an edge is not a new idea:
[235, 44] perform the computation for the sample Fréchet p-mean, [243] does so for the
population Fréchet mean on a m-spider, and [185] for the sample Fréchet mean.

Next, we leverage the geometry of T and the geodesic convexity of ϕ to show
a connection between the sign of the directional derivative and the location of the
minimizers of ϕ.

Proposition 5.14. Let α0 and v two distinct points in T .

1. If ϕ′
v(α0) < 0, then M(µ) ⊂ Tα0→v.

2. If ϕ′
v(α0) > 0, then M(µ) ⊂ T \ Tα0→v.

3. If ϕ′
v(α0) = 0, then α0 ∈M(µ).

As a consequence, we obtain the following first-order optimality conditions.

Proposition 5.15. Let α ∈ T .

1. The following are equivalent:

(a) α ∈M(µ).

(b) For every v ∈ T \ {α}, ϕ′
v(α) ≥ 0.

(c) For every neighboring vertex v of α, ϕ′
v(α) ≥ 0.

2. If for every v ∈ T \ {α}, ϕ′
v(α) > 0, then α is the unique minimizer of ϕ, i.e.,

M(µ) = {α}.

3. Assume that α lies in the interior of an edge [v, w], that µ({α}) = 0 or ℓ′+(0) = 0,
and that ℓ is differentiable over (0,∞). Then

α ∈M(µ) ⇐⇒ ϕ′
v(α) = ϕ′

w(α) = 0

⇐⇒
∫
Tα→v

ℓ′(d(α, x)) dµ(x) =

∫
Tα→w

ℓ′(d(α, x)) dµ(x).

Note that thanks to Remark 5.11, in Part 2 of Proposition 5.15, it is sufficient to
only consider neighboring vertices of α.
Remark 5.16. Any v with ϕ′

v(α) < 0 is called a descent direction at α. By Proposi-
tion 5.15 we obtain the following alternative, which is well-known in convex optimiza-
tion over vector spaces: either there exists a descent direction at α, or α ∈M(µ).
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Example 5.17. Assume that α lies in the interior of an edge [v, w].

1. For Fréchet p-means with p > 1, item 3. of Proposition 5.15 yields

α ∈Mp(µ) ⇐⇒
∫
Tα→v

d(α, x)p−1 dµ(x) =

∫
Tα→w

d(α, x)p−1 dµ(x).

2. For Fréchet medians,

α ∈M1(µ) ⇐⇒ µ(Tα→v ∪ {α}) ≥ 1

2
and µ(Tα→w ∪ {α}) ≥ 1

2
.

This last optimality condition is reminiscent of the classical characterization
of a median on R as any m ∈ R that verifies both µ ((−∞,m]) ≥ 1/2 and
µ ([m,∞)) ≥ 1/2.

By Proposition 5.7, M(µ) is a nonempty convex subset of T . Under a mild addi-
tional assumption on ℓ we obtain the following more precise statement on the geometry
of M(µ).

Proposition 5.18. If ℓ is increasing, then M(µ) is a geodesic segment.

Example 5.19. When p > 1 the loss defining the Fréchet p-mean is strictly convex,
hence by Proposition 5.7 M(µ) is a singleton and thus a geodesic segment. For Fréchet
medians (p = 1), the loss is not strictly convex, however it is increasing and M(µ) is a
geodesic segment. In particular, it cannot contain a 3-spider.

Lastly, the following localization property involves the support of µ (i.e., the small-
est closed subset of T that has µ-probability 1 [204, Theorem 2.1]) and it will prove
useful later.

Proposition 5.20. Assume ℓ is increasing and supp(µ) ⊂ G where G is a closed
convex subset of T . Then M(µ) ⊂ G.

5.3 Estimation of Fréchet ℓ-means and statistical re-
sults

5.3.1 Estimation setting

Definition 5.21. Let (Xn)n≥1 be a sequence of i.i.d. T -valued random elements defined
on some probability space (Ω,F ,P), each with distribution µ. For each n ≥ 1, we
define the empirical measure µ̂n = 1

n

∑n
i=1 δXi

and the empirical objective function
ϕ̂n : α 7→ 1

n

∑n
i=1 ℓ(d(α,Xi)). Minimizers of ϕ̂n (i.e., elements of M(µ̂n)) are called

empirical Fréchet ℓ-means.

To avoid notational overburden, the directional derivative of ϕ̂n will be written as
ϕ̂′
v(α); the integer n is clear from the context and is therefore omitted.

We assume throughout that the probability space (Ω,F ,P) is complete. By [195,
Proposition 5.3.9, Proposition 5.3.13], M(µ̂n) is a measurable closed subset of T , i.e., for
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all compact subsets K ⊂ T , the subset {ω ∈ Ω :M(µ̂ω
n)∩K = ∅} is measurable. Hence,

for all open subsets O ⊂ T , {M(µ̂n)∩O = ∅} is also measurable. Indeed, write O as the
union of a sequence (Kp)p≥1 of compact subsets of T (such a sequence exists because T
is locally compact and Hausdorff). Then, {M(µ̂n)∩O = ∅} =

⋂
p≥1{M(µ̂n)∩Kp = ∅},

which is measurable. In particular, for all closed subsets F ⊂ T , {M(µ̂n) ⊂ F} is
measurable, which will be useful later (e.g., in Theorem 5.27).

Replacing µ with µ̂n in Proposition 5.7, ϕ̂n is continuous, M(µ̂n) is non-empty
and there exists a measurable selection of M(µ̂n), i.e., a minimizer α̂n of ϕ̂n, which
is a random variable [7, Theorem 18.19]. This is most useful when M(µ̂n) is not a
singleton, which may happen for instance if ℓ is not strictly convex.

5.3.2 A law of large numbers for sets

In terms of sets, estimation is successful if the stochastic set M(µ̂n) gets closer in some
sense to the true set M(µ) as n → ∞. In the works [286, 247, 33, 137, 231, 89] two
modes of convergence are considered for the sequence (M(µ̂n))n≥1.

Definition 5.22. 1. (M(µ̂n))n≥1 is strongly consistent in outer limit [231] (alter-
natively, in Kuratowski upper limit [89] or in the sense of Ziezold [286, 137])
if

P
(⋂
n≥1

⋃
p≥n

M(µ̂p) ⊂M(µ)
)
= 1.

2. (M(µ̂n))n≥1 is strongly consistent in one-sided Hausdorff distance [231, 89] (al-
ternatively, in the sense of Bhattacharya–Patrangenaru [33]) if

P
(

sup
α∈M(µ̂n)

inf
β∈M(µ)

d(α, β) −−−→
n→∞

0
)
= 1.

In [126, 231, 89] each of these statements is regarded as a set-valued strong law of
large numbers. A caveat about Definition 5.22 is that these notions of closeness between
M(µ̂n) and M(µ) are only one-sided: there might exist some α⋆ ∈ M(µ) such that
the distance of α⋆ to M(µ̂n) remains bounded away from 0 with positive probability.
However, in the case of a unique Fréchet ℓ-mean (i.e., M(µ) = {α⋆}), Definition 5.22
yields strong consistency in the usual sense: for any sequence of measurable selections
(α̂n)n≥1, d(α̂n, α⋆) → 0 almost surely.

Since the metric space that we consider is compact, the two modes of consistency
introduced above are equivalent. In [137, 231], strong consistency is obtained for a
wide variety of metric spaces and functions ℓ. As an application of these results to our
setting, we obtain the following strong law of large numbers.

Lemma 5.23 (Strong law of large numbers). (M(µ̂n))n≥1 is strongly consistent in
either of the senses of Definition 5.22.

5.3.3 Stickiness

In order to simplify the exposition, throughout this subsection we add the requirement
that the loss ℓ be increasing, instead of just nondecreasing as in Definition 5.4.
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We leverage the geometry of the metric tree T to describe in more detail how
(M(µ̂n))n≥1 converges to M(µ). To this end, we adapt the concept of stickiness that
was introduced in [126] and further explored in [136, 32, 162].

Definition 5.24. Let c ∈ T with neighboring vertices v1, . . . , vm. Depending on which
of the following disjoint and exhaustive conditions is satisfied, we say that c is:

• sticky if c ∈M(µ) and for every i ∈ {1, . . . ,m}, ϕ′
vi
(c) > 0,

• partly sticky if c ∈M(µ) and there exists some i ∈ {1, . . . ,m} such that ϕ′
vi
(c) =

0,

• nonsticky if c is not in M(µ).

Remark 5.25. By Proposition 5.15 c is nonsticky if and only if there exists some (unique)
i ∈ {1, . . . ,m} such that ϕ′

vi
(c) < 0.

Remark 5.26. Originally Hotz et al. [126] defined stickiness in the setting of the Fréchet
mean (ℓ : z 7→ z2) on an open book. For us, the compact metric tree that most
resembles an open book is the m-spider with center c and leaves v1, . . . , vm (if each
branch of the m-spider was unbounded, the space would be an open book with spine
{c}). In [126, Definition 2.10], stickiness is defined according to the sign of the quantity

mi =

∫
(c,vi]

d(c, x) dµ(x)−
∑
j ̸=i

∫
(c,vj ]

d(c, x) dµ(x),

which in our notation is exactly −1
2
ϕ′
vi
(c).

When the directional derivative ϕ′
vi
(c) is nonzero, Proposition 5.14 helps to locate

the minimizers of ϕ. As n grows, it is expected that the empirical counterpart ϕ̂′
vi
(c)

becomes nonzero and has the same sign as ϕ′
vi
(c) with high probability. It is then

possible to obtain identical localization constraints on the empirical Fréchet ℓ-means.
The following theorem makes this intuition precise.

Theorem 5.27 (Nonasymptotic empirical stickiness). Let c ∈ T and n ≥ 1 be fixed.

1. If c is sticky, then M(µ) = {c} and

P(M(µ̂n) = {c}) ≥ 1−
m∑
i=1

exp

(
− ϕ′

vi
(c)2

2ℓ′+(D)2
n

)
.

2. If c is partly sticky, we let I =
{
i = 1, . . . ,m : ϕ′

vi
(c) = 0

}
. Then, I has either

one or two elements. Moreover, {c} ⊂M(µ) ⊂ {c} ∪⋃i∈I Tc→vi.

(a) If |I| = 1, then, writing I = {i∗},

P
(
M(µ̂n) ⊂ {c} ∪ Tc→vi∗

)
≥ 1−

∑
i ̸=i∗

exp

(
− ϕ′

vi
(c)2

2ℓ′+(D)2
n

)
.
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(b) If |I| = 2, then µ
(
{c} ∪⋃i∈I Tc→vi

)
= 1 and

P
(
M(µ̂n) ⊂ {c} ∪

⋃
i∈I
Tc→vi

)
= 1.

3. If c is nonsticky with ϕ′
vi
(c) < 0 for some i ∈ {1, . . . ,m}, then M(µ) ⊂ Tc→vi and

P(M(µ̂n) ⊂ Tc→vi) ≥ 1− exp

(
− ϕ′

vi
(c)2

2ℓ′+(D)2
n

)
.

The exponential bounds of Theorem 5.27 combined with the Borel–Cantelli lemma
lead to the following asymptotic result. When c is sticky, with probability 1 the em-
pirical sets of minimizers M(µ̂n) are eventually equal to {c}. This justifies the use of
the adjective “sticky”.

Corollary 5.28 (Sticky law of large numbers).

1. If c is sticky, then with probability 1, M(µ̂n) = {c} for all large enough n.

2. If c is partly sticky, let I as in Theorem 5.27.

(a) If |I| = 1, then with probability 1, M(µ̂n) ⊂ {c} ∪ ⋃i∈I Tc→vi for all large
enough n.

(b) If |I| = 2, then with probability 1, M(µ̂n) ⊂ {c} ∪⋃i∈I Tc→vi for all n ≥ 1.

3. If c is nonsticky with ϕ′
vi
(c) < 0 for some i ∈ {1, . . . ,m}, then with probability 1,

M(µ̂n) ⊂ Tc→vi for all large enough n.

The earlier definition of stickiness involves the signs of the directional derivatives at
c. It is therefore stated in terms of the landscape of the objective function ϕ around c.
The following proposition provides an equivalent formulation of stickiness: c is sticky
if and only if the equality M(ν) = {c} holds for every measure ν that is sufficiently
close to µ. The notion of stickiness thus has an interpretation in terms of robustness.

We quantify the closeness between two probability measures ν1, ν2 using the to-
tal variation metric defined as TV(ν1, ν2) = supB∈B(T ) |ν1(B) − ν2(B)| and the 1-
Wasserstein metricW1(ν1, ν2) = sup{

∫
T
f(x) dν1(x)−

∫
T
f(x) dν2(x) : f is 1-Lipschitz}.

Total variation is stronger than 1-Wasserstein, in the sense thatW1(ν1, ν2) ≤ DTV(ν1, ν2),
where D is the diameter of T [264, Theorem 6.15]. Note that closeness in W1 need not
imply closeness in total variation.

Proposition 5.29. 1. c is sticky if and only if there exists ε > 0 such that for every
probability measure ν verifying TV(ν, µ) ≤ ε we have M(ν) = {c}.

2. Under the additional assumption that ℓ is differentiable with Lipschitz derivative,
1. holds in W1 instead of TV.

Remark 5.30. Connections between stickiness and robustness under perturbations were
already explored in the context of stratified spaces by Huckemann et al. [136, Section
7], Bhattacharya et al. [32, Proposition 2.8] and most recently by Lammers et al. [162].
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Remark 5.31. Note that stickiness can happen even when the distribution µ has a
density with respect to the Lebesgue measure on T . As an example, consider the m-
spider Tm (m ≥ 3) with legs of length two. This is the metric tree with one central
vertex, connected with all m leaves by edges of length 2. More formally, Tm is defined
as {1, . . . ,m} × [0, 2] where one identifies all elements of the form (k, 0), k = 1, . . . ,m
and where d((k, x), (l, y)) = |x− y| if k = l, x+ y otherwise. Now, let µ be the uniform
distribution on {(k, x) ∈ Tm : k = 1, . . . ,m, 0 ≤ x ≤ 1}, i.e., the distribution with
constant density (with respect to the Lebesgue measure on Tm) that is equal to 1/m on
the first half of each leg, and 0 everywhere else. Then, a straighforward computation
shows that for all α = (k, x) ∈ Tm with x ≤ 1, ϕ(α) = m−1

m
(L(1 + x)− L(x)) +

1
m
(L(x) + L(1− x)), where L(u) =

∫ u

0
ℓ(t) dt, for u ≥ 0. Denote the latter expression

by F (x). Then, for all leaves v of Tm, ϕ′
v((1, 0)) = F ′

+(0) =
(
1− 2

m

)
ℓ(1) > 0, since

m ≥ 3. Hence, by the second part of Proposition 5.15, there is a unique Fréchet ℓ-mean
α⋆ = (1, 0) (i.e., the central vertex of Tm) and it is sticky.

To illustrate Proposition 5.29, perturb µ by defining a distribution ν that is uni-
form on {(k, x) ∈ Tm : k = 1, . . . ,m, 0 ≤ x ≤ bk}, where b1, . . . , bm ∈ (0, 2] are fixed
numbers. Set b = b1 + . . . + bm. Now, for ν, a similar computation shows that for all
α = (k, x) ∈ Tm with x ≤ bk, ϕ(α) = 1

b

(∑
j ̸=k (L(x+ bj)− L(x)) + L(x) + L(bk − x)

)
,

which we denote by Fk(x). Recall that α⋆ = (1, 0) is the central vertex of Tm. Then,
if we let vk be the leaf of Tm on the k-th leg, it holds that ϕ′

vk
(α⋆) = (Fk)

′
+(0) =

1
b

(∑
j ̸=k ℓ(bj)− ℓ(bk)

)
. If all bj’s are close enough to 1, it hence still holds that

ϕ′
vk
(α⋆) > 0 for all k = 1, . . . ,m, yielding M(ν) = {α⋆}, by the second part of Propo-

sition 5.15.

5.4 The special case of Fréchet medians
Now, we restrict our focus to Fréchet medians, i.e., the case where the loss is ℓ : z 7→ z.
Among the operations research community, the median case has generated the most
interest, as it is the most intuitive in applications: the practitioner looks for a new
facility on the network that minimizes the average travel time to the demand.

5.4.1 Further descriptive results

In Proposition 5.18 we observed that the set of medians M1(µ) was a geodesic segment.
Besides, for a discrete measure with uniform weights ν = 1

m

∑m
i=1 δxi

on the real line R,
it is well-known that M1(ν) contains at least one of the xi. We provide a generalization
of this fact on a tree: an extremity of M1(µ) is a vertex of T , or it is in the support of
µ (i.e., the smallest closed subset of T that has µ-probability 1 [204, Theorem 2.1]).

Proposition 5.32. Let α1 and α2 denote the endpoints of the geodesic segment M1(µ),
i.e., M1(µ) = [α1, α2]. The following inclusion holds: {α1, α2} ⊂ V ∪ supp(µ), where
V is the set of vertices of T .

Remark 5.33. Hakimi [109] states a weaker statement: when µ is discrete and supported
on V , he proves that M1(µ) ∩ V ̸= ∅.
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A measure ν on R has at least two medians if and only if there exists m1 < m2

such that ν ((−∞,m1]) = ν ([m2,−∞)) = 1
2

[223, Corollary 2.6]. The next proposition
is an extension of this fact to metric trees. It will prove useful later, so as to guarantee
that M1(µ) is a singleton.

Proposition 5.34. µ has more than one Fréchet median if and only if there exist G1, G2

two disjoint closed convex subsets of T such that µ(G1) = µ(G2) =
1
2
. Consequently, if

the support of µ is a connected subset of T (e.g., if µ has a positive density with respect
to the Lebesgue measure on T ), then µ has a unique Fréchet median.

In the next subsections, a convex subset G is known that contains M1(µ). It is
fruitful to consider the metric projection on G (for the definition and basic properties
of the metric projection on a closed convex subset of a Hadamard space see, e.g., [15,
Theorem 2.1.12]) and transform µ into a measure supported on G, hence the following
definition.

Definition 5.35. Let G be a closed convex subset of T , and let π : T → T denote the
metric projection on G. We denote by π#µ the pushforward measure of µ by π, and
we write ϕπ#µ for the objective function corresponding to π#µ.

Remark 5.36. Although the image of π is G, we define π as a map with codomain T
so that π#µ remains naturally a Borel measure on T .

The following technical proposition gathers statements on π#µ that will prove useful
in the next subsections.

Proposition 5.37. 1. The set π(T \G) is finite. We write π(T \G) = {v1, . . . , vm}
and we define the sets Ti = π−1({vi}).

2. π#µ is a Borel measure on T . It rewrites explicitly as π#µ = µ|G̊+
∑m

i=1 µ(Ti)δvi.

3. M1(π#µ) is a subset of G.

4. ϕ and ϕπ#µ differ by an additive constant over G. More precisely,

∀α ∈ G, ϕ(α) = ϕπ#µ(α) +
m∑
i=1

∫
Ti

d(vi, x) dµ(x).

5. The following inclusion holds: M1(µ) ∩G ⊂M1(π#µ).

6. Assume that M1(µ) ⊂ G. Then M1(µ) =M1(π#µ).

5.4.2 Further statistical results

We are now ready to return to the statistical side. In what follows we assume that
M1(µ) = {α⋆}, i.e., there is a unique Fréchet median α⋆. A sufficient conditions
for uniqueness was given in Proposition 5.34. We are thus in the classical setting of
parameter estimation. However the empirical set M1(µ̂n) may not be a singleton; we
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consider therefore an arbitrary sequence of measurable selections (α̂n)n≥1, as explained
in Section 5.3.1.

Recall, from Definition 5.24, that α⋆ must be either sticky or partly sticky, since it
is in M(µ). When α⋆ is sticky, Corollary 5.28 asserts that (α̂n)n≥1 converges almost
surely to α⋆ at an arbitrarily fast rate. From a statistical standpoint the sticky case is
thus fully elucidated, and in the rest of this section, we assume that α⋆ is partly sticky.

Let v1, . . . , vm denote the neighboring vertices of α⋆. In Theorem 5.27 it was seen,
for the partly sticky case, that there are at most two indices i ∈ {1, . . . ,m} such that
ϕ′
vi
(α⋆) = 0, i.e., µ(Tα⋆→v) = 1/2. Therefore, we study the properties of α̂n in two

distinct cases, which we denominate as follows.

Definition 5.38. We say that α⋆ is one-sidedly partly sticky if there is a unique i such
that ϕ′

vi
(α⋆) = 0. Otherwise, we say that α⋆ is two-sidedly partly sticky.

The two-sided partly sticky case

Assume without loss of generality that ϕ′
v1
(α⋆) = ϕ′

v2
(α⋆) = 0 and for all i ≥ 3,

ϕ′
vi
(α⋆) > 0 (recall that v1, . . . , vm are the vertices adjacent to α⋆). In other words,

µ(Tα⋆→v1) = µ(Tα⋆→v2) = 1/2 thus µ(Tα⋆→vi) = 0 for all i ≥ 3 and all the mass of µ
is supported on Tα⋆→v1 ∪ Tα⋆→v2 (in particular, α⋆ is not an atom of µ). Note that α⋆

may be in the interior of an edge, in which case m = 2.
By the law of large numbers in Lemma 5.23, it is known that P(d(α̂n, α⋆) → 0) = 1.

By Theorem 5.27, we know additionally that α̂n ∈ {α⋆}∪Tα⋆→v1∪Tα⋆→v2 almost surely.
As a consequence, α̂n is eventually in the geodesic segment [v1, v2] with probability 1.
The closed convex subset on which we will project the measure µ and the data is
therefore G = [v1, v2]. By assumption it contains the true median α⋆.

G is naturally isometric to the compact interval [−d(α⋆, v1), d(α⋆, v2)] ⊂ R, where
α⋆ is sent on 0. By pushing forward again, this time with target space R, we replace
the problem with the analysis of sample medians on the real line. This motivates the
next definition and the lemma that follows.

Definition 5.39. Let γ : [−d(α⋆, v1), d(α⋆, v2)] → G = [v1, v2] denote the unit-speed
geodesic from v1 to v2, and let I denote the inverse of γ. We define a new sequence
of i.i.d. real valued random variables Y1, Y2, . . . as Yi = I(π(Xi)), i ≥ 1. Moreover, for
each n ≥ 1, we set m̂n = I(π(α̂n)) and the event Ωn =

{
α̂n ∈ [v1, v2]

}
. We denote

by ν the distribution of the Yi’s, i.e., the pushforward measure (I ◦ π)#µ, and by Y a
random variable with distribution ν.

Remark 5.40. For convenience, we also use the notation M1(·) to denote the set of
medians of a measure on R (which is not a metric tree by our definition).

Lemma 5.41. 1. ν is a Borel measure on R supported on the segment [−d(α⋆, v1), d(α⋆, v2)],
Y1, Y2, . . . are i.i.d. with distribution ν and M1(ν) = {0}.

2. On the event Ωn, m̂n ∈M1

(
1
n

∑n
k=1 δYk

)
and d(α̂n, α⋆) = |m̂n − 0| = |m̂n|.

3. For i ∈ {1, 2}, 0 < µ((α⋆, vi)) ≤ 1/2 and

P(Ωn) ≥ 1−
(
1− 4µ ((α⋆, v1))

2)n/2 − (1− 4µ ((α⋆, v2))
2)n/2 .
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Before we can state a central limit theorem, we define the following function.

Definition 5.42. The two-sided branch mass function ∆ is

∆: [−d(α⋆, v1), d(α⋆, v2)] → [0,∞)

t 7→ µ ((α⋆, γt)) .

This function plays an important role: The next result shows that its rate of decay
as t → 0 drives the rate of convergence of α̂n and the asymptotic distribution of a
properly rescaled version of m̂n.

Theorem 5.43 (Two-sided sticky central limit theorem). Assume that ∆ has the fol-
lowing asymptotic expansion as t→ 0:

∆(t) = K|t|a + o(|t|a), (5.5)

for some constants a > 0 and K > 0. Let Z denote a random variable with the standard
normal distribution.

1. n1/(2a)m̂n converges in distribution to the random variable sgn(Z)
(

|Z|
2K

)1/a
.

2. n1/(2a)d(α̂n, α⋆) converges in distribution to the random variable
(

|Z|
2K

)1/a
.

Corollary 5.44. Assume that (5.5) holds with a = 1 and positive K. Then
√
nm̂n is

asymptotically normal with asymptotic variance 1
4K2 .

Remark 5.45. 1. For instance, if µ has a density f with respect to the Lebesgue
measure on T (see Definition 5.2) and f is positive and continuous, then (5.5)
holds with a = 1 and K = f(α⋆), which is reminiscent of the standard real case.

2. The assumption in Corollary 5.44 is equivalently formulated as t 7→ sgn(t)∆(t)
being differentiable at 0 with positive derivative K.

The function ∆ also plays a key role in the concentration bound stated next.

Theorem 5.46. Let n ≥ 1 be fixed. For t such that 0 < t ≤ min(d(α⋆, v1), d(α⋆, v2)),
the quantities ∆(t) and ∆(−t) are both in (0, 1

2
], and the following concentration bound

holds:
P(d(α̂n, α⋆) ≥ t) ≤

(
1− 4∆2(t)

)n/2
+
(
1− 4∆2(−t)

)n/2
. (5.6)

More generally, for every t > 0:

P(d(α̂n, α⋆) ≥ t) ≤ 1t≤d(α⋆,v1)

(
1− 4∆2(t)

)n/2
+ 1t≤d(α⋆,v2)

(
1− 4∆2(−t)

)n/2
+ (1t>d(α⋆,v1) + 1t>d(α⋆,v2))P(Ωc

n).
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The one-sided partly sticky case

We turn to the partly sticky case with ϕ′
v1
(α⋆) = 0 and for all i ≥ 2, ϕ′

vi
(α⋆) > 0. In

other words, µ(Tα⋆→v1) = 1/2 and µ(Tα⋆→vi) < 1/2, for all i ≥ 2. In the sequel, we
denote by ε = min2≤i≤m (1/2− µ(Tα⋆→vi)) > 0.

Note that in the two-sided partly sticky case, it held that

α̂n ∈ {α⋆} ∪
⋃
i∈I
Tα⋆→vi (5.7)

almost surely, where I = {1, 2}. Here, I = {1} and the next result shows that (5.7) no
longer holds almost surely, but with exponentially large probability.

Proposition 5.47. If n ≥ 4, then it holds that α̂n ∈ {α⋆} ∪ Tα⋆→v1 with probability at
least 1− 2e−nε2.

Next, we proceed similarly to the two-sided partly sticky case. Here, the closed
convex subset on which we project is G = [α⋆, v1].

Definition 5.48. Let γ1 : [0, d(α⋆, v1)] → [α⋆, v1] denote the unit-speed geodesic from
α⋆ to v1, and let I denote the inverse of γ1. For each n ≥ 1 we define Yn = I(π(Xn)),
m̂n = I(π(α̂n)) and the event Ωn =

{
α̂n ∈ [α⋆, v1]

}
. We denote by ν the pushforward

measure (I ◦ π)#µ, and by Y a random variable with distribution ν.

Lemma 5.49. 1. ν is a Borel measure on R supported on the compact interval
[0, d(α⋆, v1)], the Yn are i.i.d. with distribution ν and M1(ν) = {0}.

2. On the event Ωn, m̂n ∈M1

(
1
n

∑n
k=1 δYk

)
and d(α̂n, α⋆) = |m̂n − 0| = m̂n.

3. The following inequalities hold: 0 < µ((α⋆, v1)) ≤ 1/2, 0 < ϕ′
vi
(α⋆) ≤ 1 for every

i ≥ 2, and

P(Ωn) ≥ 1−
(
1− 4µ ((α⋆, v1))

2)n/2 − m∑
i=2

(
4µ (Tα⋆→vi) (1− µ (Tα⋆→vi))

)n/2
.

Similarly as in the proof of Proposition 5.47, the sum on the right hand side of the
inequality above can be bounded from above by 2e−nε2 (as soon as n ≥ 4), which does
not depend on m.

Definition 5.50. For each i ∈ {1, . . . ,m} we define γi : [0, d(α⋆, vi)] → [α⋆, vi] the
unit-speed geodesic from α⋆ to vi and the i-th branch mass function

δi : [0, d(α⋆, vi)] → [0,∞)

t 7→ µ ((α⋆, γi,t)) .

Theorem 5.51 (One-sided sticky central limit theorem). Assume that δ1 has the fol-
lowing expansion as t→ 0+:

δ1(t) = Kta + o(ta),

for some constants a > 0 and K > 0. Let Z denote a random variable with the standard
normal distribution.
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1. n1/(2a)m̂n converges in distribution to the random variable 1
2K

max(0, Z)1/a.

2. n1/(2a)d(α̂n, α⋆) converges in distribution to the random variable 1
2K

max(0, Z)1/a.

Remark 5.52. The rate of convergence n1/(2a) is the same as in the two-sided partly
sticky case. In contrast however, the fluctuations are one-sided along the edge [α⋆, v1].

Theorem 5.53. Let n ≥ 1 be fixed. For all positive numbers t such that 0 < t ≤
min

1≤i≤m
d(α⋆, vi), we have δ1(t) ∈ (0, 1

2
], 2δi(t) + ϕ′

vi
(α⋆) ∈ (0, 1] for each i ≥ 2, and the

following concentration bound holds:

P(d(α̂n, α⋆) ≥ t) ≤
(
1− 4δ21(t)

)n/2
+

m∑
i=2

(
1−

(
2δi(t) + ϕ′

vi
(α⋆)

)2)n/2
. (5.8)

More generally, for every t > 0:

P(d(α̂n, α⋆) ≥ t) ≤ 1t≤d(α⋆,v1)

(
1− 4δ21(t)

)n/2
+

m∑
i=2

1t≤d(α⋆,vi)

(
1−

(
2δi(t) + ϕ′

vi
(α⋆)

)2)n/2
+

m∑
i=1

1t>d(α⋆,vi)P(Ω
c
n).

Remark 5.54. Since ϕ′
v1
(α⋆) = 0, half of the total mass from µ is on Tα⋆→v1 (recall

that ϕ′
vi
(α⋆) = 1− 2µ(Tα⋆→vi)), while the other half is shared among the other m− 1

branches departing from α⋆. If the branch in direction vi with i ≥ 2 has very low mass,
i.e., if µ(Tα⋆→vi) is small, then ϕ′

vi
(α⋆) is close to 1 and the contribution of the term(

1−
(
2δi(t) + ϕ′

vi
(α⋆)

)2)n/2 in (5.8) is exponentially small.

5.5 Conclusion
In this work, we considered location estimation on a metric tree, that is assumed to
be bounded, with finitely many vertices. It seems that all our results can be easily
extended to the case of an unbounded metric tree. However, an unbounded tree would
only add technicalities that would rather put shade on the intrinsic phenomena that
we were aiming at exhibiting here (namely, stickiness).

Directions for future research include establishing limit distribution results and con-
centration inequalities for Fréchet ℓ-means other than the median, as well as extending
our understanding of the stickiness phenomenon beyond metric trees.

5.6 Proofs

5.6.1 Proofs for Section 5.2

Lemma 5.55. Let f : [0,∞) → [0,∞) be nondecreasing and a ≥ 0. The function
ℓ : z 7→ a+

∫ z

0
f(t) dt is convex.
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Proof of Lemma 5.55. The following inequality between slopes holds: for any 0 ≤ z1 <
z2 < z3,

ℓ(z2)− ℓ(z1)

z2 − z1
=

1

z2 − z1

∫ z2

z1

f(t) dt ≤ f(z2) ≤
1

z3 − z2

∫ z3

z2

f(t) dt =
ℓ(z3)− ℓ(z2)

z3 − z2
,

(5.9)
thus ℓ is convex [203, Proposition 6.2.1].

Proof of Lemma 5.6. 1. Since ℓ is convex, it has finite left- and right-derivative at
each z > 0, with ℓ′− and ℓ′+ being nondecreasing [203, Proposition 6.2.7]. Since ℓ is
nondecreasing, ℓ′− and ℓ′+ are nonnegative, and the function z 7→ (ℓ(z)− ℓ(0)) /z is
bounded below by 0, hence ℓ′+(0) is finite.

2. For a fixed Z > 0 and 0 ≤ z1 < z2 ≤ Z, we have the estimate

0 ≤ ℓ(z2)− ℓ(z1)

z2 − z1
≤ ℓ′−(z2) ≤ ℓ′−(Z),

thus ℓ is locally Lipschitz.
3. By the last point, ℓ is absolutely continuous on compact intervals. Let Z > 0 be

fixed. By the fundamental theorem of calculus [227, Theorem 7.18], ℓ is differentiable
a.e. on [0, Z] and for every z ∈ [0, Z], ℓ(z) − ℓ(0) =

∫ z

0
fZ(t) dt, where fZ denotes

a derivative of ℓ. Since fZ and ℓ′+ coincide a.e. on [0, Z], we obtain ℓ(z) − ℓ(0) =∫ z

0
ℓ′+(t) dt. We proceed similarly with ℓ′−.

Proof of Proposition 5.7. 1. Since T is bounded and ℓ is nondecreasing, ℓ(d(α, x)) ≤
ℓ(D), hence ϕ is well-defined. That ϕ is continuous follows from continuity of ℓ (seen in
Lemma 5.6) and the dominated convergence theorem. Since T is Hadamard, by [203,
Example 8.4.7 (i)] the map α 7→ d(α, x) is convex for each x ∈ T , and by the convexity
and monotonicity of ℓ we obtain convexity of α 7→ ℓ(d(α, x)). That ϕ is convex follows
by integration.

2. T is compact and ϕ is continuous, hence M(µ) is nonempty. By [15, Example
2.1.3], M(µ) is closed and convex.

3. If ℓ′+ is increasing, the inequality (5.9) between slopes is strict, hence ℓ is strictly
convex. If ℓ′+ is not increasing, there exists an open interval I ⊂ [0,∞) where ℓ′+ is
equal to some constant C. By [203, Proposition 6.2.7], ℓ′− is also equal to C, hence ℓ
is differentiable over I with derivative C, thus ℓ is affine over I and ℓ is not strictly
convex.

We suppose now that ℓ is strictly convex. Assume for the sake of contradiction that
ϕ is not strictly convex: there exists a geodesic γ : [0, 1] → T and t ∈ (0, 1) such that
γ0 ̸= γ1 and ϕ(γt) = (1− t)ϕ(γ0) + tϕ(γ1), i.e.,

0 =

∫
T

((1− t)ℓ(d(γ0, x)) + tℓ(d(γ1, x))− ℓ(d(γt, x))) dµ(x).

The function x 7→ (1− t)ℓ(d(γ0, x)) + tℓ(d(γ1, x))− ℓ(d(γt, x)) is thus nonnegative and
has integral 0. Consequently, there exists x⋆ ∈ T such that

ℓ(d(γt, x⋆)) = (1− t)ℓ(d(γ0, x⋆)) + tℓ(d(γ1, x⋆)). (5.10)
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Since ℓ is strictly convex and nondecreasing, the function α 7→ ℓ(d(α, x⋆)) is strictly
convex as well; this contradicts (5.10). By [203, Proposition 8.4.5] M(µ) is a singleton.

Proof of Proposition 5.9. Decomposing the distance d(α′, x) with respect to the loca-
tion of x in the tree, we obtain the equality

ϕ(α′)− ϕ(α) =

∫
T\Tα→v

(
ℓ (d(α, x) + d(α, α′))− ℓ(d(α, x))

)
dµ(x)

+

∫
Tα′→v

(
ℓ (d(α, x)− d(α, α′))− ℓ(d(α, x))

)
dµ(x)

+

∫
(α,α′]

(
ℓ(d(α′, x))− ℓ(d(α, x))

)
dµ(x).

(5.11)

To obtain the limit (5.4), we consider a sequence (α′
n)n≥1 of points in (α, v] that con-

verges to α, and we apply the dominated convergence theorem to each integral in
Equation (5.11). The domination follows from the following estimate: for α′ ̸= α and
x ∈ T , by the convexity of ℓ:

ℓ(d(α′, x))− ℓ(d(α, x))

d(α′, α)
≤ ℓ′+(d(α

′, x))
d(α′, x)− d(α, x)

d(α′, α)
≤ ℓ′+(D),

hence by symmetry
|ℓ(d(α′, x))− ℓ(d(α, x))|

d(α′, α)
≤ ℓ′+(D).

Proof of Proposition 5.14. 1. Since ϕ′
v(α0) < 0, there exists a one-sided neighborhood

N of α0 such that N ⊂ (α0, v] and α′ ∈ N =⇒ ϕ(α′) < ϕ(α0). For the sake of
contradiction assume the existence of α⋆ ∈M(µ) ∩ (T \ Tα0→v). Fix some α′ ∈ N and
let γ : [0, 1] → [α′, α⋆] be the geodesic from α′ to α⋆. For some t ∈ (0, 1), γ(t) = α0,
thus

ϕ(α0) = ϕ(γt) ≤ (1− t)ϕ(α′) + tϕ(α⋆) < (1− t)ϕ(α0) + tϕ(α⋆),

hence ϕ(α0) < ϕ(α⋆), a contradiction.
2. There exists a one-sided neighborhood N of α0 such that N ⊂ (α0, v] and

α′ ∈ N =⇒ ϕ(α′) > ϕ(α0). For the sake of contradiction assume the existence of
α⋆ ∈ M(µ) ∩ Tα0→v. Let γ : [0, 1] → [α0, α⋆] be the geodesic from α0 to α⋆. For small
enough positive t, γ(t) is in N , thus

ϕ(α0) < ϕ(γt) ≤ (1− t)ϕ(α0) + tϕ(α⋆),

hence ϕ(α0) < ϕ(α⋆), a contradiction.
3. We let α ∈ T \ {α0} be arbitrary and we show that ϕ(α0) ≤ ϕ(α).
Consider first the case where α ∈ Tα0→v. Letting γ : [0, 1] → [α0, α] be the geodesic

from α0 to α, ϕ(γt) ≤ (1− t)ϕ(α0) + tϕ(α), thus for each t > 0

ϕ(γt)− ϕ(α0)

t
≤ ϕ(α)− ϕ(α0). (5.12)
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Since for small enough t we have γt ∈ (α0, v], passing to the limit yields ϕ′
v(α0) ≤

ϕ(α)− ϕ(α0), hence ϕ(α0) ≤ ϕ(α).
If T \ (Tα0→v ∪ {α0}) is empty, the proof is over. Otherwise we pick w in this set

and we consider the case where α ∈ T \ (Tα0→v∪{α0}). With the geodesic γ from α0 to
α, Equation (5.12) still holds and taking the limit yields ϕ′

w(α0) ≤ ϕ(α) − ϕ(α0). For
α′, α′′ such that α′ ∈ (α0, v] and α′′ ∈ (α0, w], letting ψ denote the geodesic from α′′ to
α′ and t = d(α0, α

′′)/d(α′, α′′), the convexity inequality ϕ(ψt) ≤ (1 − t)ϕ(α′′) + tϕ(α′)
rewrites as

ϕ(α0)− ϕ(α′)

d(α0, α′)
≤ ϕ(α′′)− ϕ(α0)

d(α′′, α0)
. (5.13)

Taking limits, we obtain 0 = −ϕ′
v(α0) ≤ ϕ′

w(α0), hence 0 ≤ ϕ(α)− ϕ(α0).

Proof of Proposition 5.15. 1. If α ∈M(µ), condition (b) follows from nonnegativity of
the numerator in (5.4). Suppose that every neighboring vertex v satisfies ϕ′

v(α) ≥ 0. If
all the ϕ′

v(α) are positive, then by combining the inclusions of Proposition 5.14 we have
M(µ) = {α}. Otherwise ϕ′

v(α) = 0 for some v and Proposition 5.14 yields α ∈M(µ).
2. Assume that for all v ∈ T \ {α}, ϕ′

v(α) > 0. Then, by Proposition 5.14,
M(µ) ⊂ T \ Tα→v, for all v ̸= α, i.e., M(µ) ⊂ {α}. It also holds that α ∈M(µ) by the
first part of this proposition, yielding the result.

3. For convenience, let us abuse notation and write that ℓ is also differentiable at
0 with ℓ′(0) = ℓ′+(0). We define S(α) =

∫
T
ℓ′(d(α, x)) dµ(x). By the assumption, α has

two neighboring vertices: v and w. By 1.(c) and the differentiability of ℓ, α ∈M(µ) if
and only if∫

Tα→v

ℓ′(d(α, x)) dµ(x) ≤ S(α)

2
and

∫
Tα→w

ℓ′(d(α, x)) dµ(x) ≤ S(α)

2
.

Note additionally that

S(α) =

∫
Tα→v

ℓ′(d(α, x)) dµ(x) +

∫
Tα→w

ℓ′(d(α, x)) dµ(x) +

∫
{α}

ℓ′(d(α, x)) dµ(x).

Since µ({α})ℓ′(0) = µ({α})ℓ′+(0) = 0, the rightmost integral is 0, and the claim follows.

Proof of Proposition 5.18. Assume for the sake of contradiction that M(µ) is not a
geodesic segment. Then it contains a 3-spider G with center c (a vertex of T ) and outer
vertices v1, v2, v3 (which may not be vertices of T ). For i ∈ {1, 2, 3}, since c ∈M(µ) we
must have ϕ′

vi
(c) ≥ 0. Furthermore, if ϕ′

vi
(c) > 0 then by Proposition 5.14 we would

have M(µ) ⊂ T \ Tc→vi which contradicts vi ∈ M(µ), thus ϕ′
vi
(c) = 0. Since ℓ′+ is

nonnegative and ℓ′+(z) ≥ ℓ′−(z) holds for each z > 0 we obtain the bound:

0 = ϕ′
vi
(c) =

∫
{c}
ℓ′+(d(c, x)) dµ(x) +

∫
T\(Tc→vi∪{c})

ℓ′+(d(c, x)) dµ(x)−
∫
Tc→vi

ℓ′−(d(c, x)) dµ(x)

≥
∫
T\{c}

ℓ′−(d(c, x)) dµ(x)− 2

∫
Tc→vi

ℓ′−(d(c, x)) dµ(x),
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hence
∫
Tc→vi

ℓ′−(d(c, x)) dµ(x) ≥ 1
2

∫
T\{c} ℓ

′
−(d(c, x)) dµ(x). Summing these inequalities,

we find∫
T\{c}

ℓ′−(d(c, x)) dµ(x) ≥
3∑

i=1

∫
Tc→vi

ℓ′−(d(c, x)) dµ(x) ≥
3

2

∫
T\{c}

ℓ′−(d(c, x)) dµ(x),

(5.14)
which yields

∫
T\{c} ℓ

′
−(d(c, x)) dµ(x) = 0 and 1T\{c}(x)ℓ′−(d(c, x)) = 0 for µ-almost every

x. Since ℓ is increasing, ℓ−(z) > 0 holds for each z > 0, thus µ = δc and ϕ′
v1
(c) = 1.

This is a contradiction, hence M(µ) is a geodesic segment.

Proof of Proposition 5.20. Since T is a Hadamard space and G is closed and convex,
the metric projection on G is well-defined [15, Theorem 2.1.12], and we denote it by π.
Fix α ∈ T \G and let x ∈ G. By the Pythagorean inequality [15, Theorem 2.1.12 (ii)]
and the strict monotonicity of ℓ,

ℓ(d(α, x)) > ℓ(d(π(α), x)). (5.15)

Since supp(µ) ⊂ G, we have further ϕ(α) =
∫
G
ℓ(d(α, x)) dµ(x) >

∫
G
ℓ(d(π(α), x)) dµ(x) =

ϕ(π(α)), where the strict inequality is a consequence of (5.15). As a result, α ∈
T \M1(µ).

5.6.2 Proofs for Section 5.3

Proof of Lemma 5.23. [137, Theorem A.3] or [231, Theorem 3.2].

Proof of Theorem 5.27. 1. Let i ∈ {1, . . . ,m} be fixed. For each k ∈ {1, . . . , n} we
define the random variables

Yk = 1T\Tc→vi
(Xk)ℓ

′
+(d(c,Xk))− 1Tc→vi

(Xk)ℓ
′
−(d(c,Xk)),

so that ϕ̂′
vi
(c) = 1

n

∑n
k=1 Yk, the Yk are i.i.d. and |Yk| ≤ ℓ′+(d(c,Xk)) ≤ ℓ′+(D). Since c

is sticky, ϕ′
vi
(c) > 0 and by Hoeffding’s inequality,

P(ϕ̂′
vi
(c) ≤ 0) = P

(
−ϕ̂′

vi
(c)− (−ϕ′

vi
(c)) ≥ ϕ′

vi
(c)
)

≤ exp

(
− ϕ′

vi
(c)2

2ℓ′+(D)2
n

)
.

We note that ℓ′+(D) > 0 since ℓ is increasing. Proposition 5.14 yields the equality
M(µ) = {c} as well as the inclusion

⋂m
i=1{ϕ̂′

vi
(c) > 0} ⊂ {M(µ̂n) = {c}}. By a union

bound,

P(M(µ̂n) = {c}) ≥ 1−
m∑
i=1

exp

(
− ϕ′

vi
(c)2

2ℓ′+(D)2
n

)
.

2. For the partly sticky case, the implication i /∈ I =⇒ ϕ′
vi
(c) > 0 and the equality⋂

i/∈I
(T \ Tc→vi) = {c} ∪

⋃
i∈I
Tc→vi
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justify the inclusion M(µ) ⊂ {c} ∪ ⋃i∈I Tc→vi . The bound on the cardinality of I
follows from the argument that led to (5.14).

When |I| = 1, the proof of the exponential bound is similar to the sticky case. Now,
assume that I = {1, 2}. The argument that led to (5.14) yields∫

Tc→v1

ℓ′−(d(c, x)) dµ(x) =

∫
Tc→v2

ℓ′−(d(c, x)) dµ(x) =
1

2

∫
T\{c}

ℓ′−(d(c, x)) dµ(x),

thus ∫
T\({c}∪Tc→v1∪Tc→v2 )

ℓ′−(d(c, x)) dµ(x) = 0,

and since ℓ is increasing, this implies

µ(T \ ({c} ∪ Tc→v1 ∪ Tc→v2)) = 0.

Consequently, supp(µ) ⊂ {c}∪Tc→v1 ∪Tc→v2 , thus the event
⋂n

k=1

{
Xk ∈ ({c}∪Tc→v1 ∪

Tc→v2)
}

has probability 1 and P(supp(µ̂n) ⊂ {c} ∪ Tc→v1 ∪ Tc→v2) = 1. Since ℓ was
assumed to be increasing in this section, by Proposition 5.20 we obtain

P(M(µ̂n) ⊂ {c} ∪ Tc→v1 ∪ Tc→v2) = 1.

3. The proof in the nonsticky case is also similar to the sticky case.

Proof of Corollary 5.28. We only deal with the sticky case, as the others are similar.
Since the series

∑
n≥1

∑m
i=1 exp

(
− ϕ′

vi
(c)2

2ℓ′+(D)2
n
)

has a finite sum, the Borel–Cantelli lemma
yields

P
(
∃N ≥ 1,∀n ≥ N,M(µ̂n) = {c}

)
= 1.

Proof of Proposition 5.29. In this proof we will say for convenience that c is µ-sticky
if c is sticky when the measure under study is µ, and we say similarly that c is µ-partly
sticky.

1. Suppose c is µ-sticky and define ε = minj ϕ
′
vj
(c)/

(
4ℓ′+(D)

)
. Let ν be such

that TV(ν, µ) ≤ ε, let ϕ̃ denote the objective function associated to ν and fix some
i ∈ {1, . . . ,m}. Recall that

TV(ν1, ν2) =
1

2
sup
{∫

T

f(x) dν1(x)−
∫
T

f(x) dν2(x) | f : T → [−1, 1] is measurable
}

(see, e.g., [236, Lemma 1 p.432]). Since the function

φ : x 7→ 1T\Tc→vi
(x)ℓ′+(d(c, x))− 1Tc→vi

(x)ℓ′−(d(c, x)) (5.16)

is bounded by ℓ′+(D) and we have the estimate

|ϕ̃′
vi
(c)− ϕ′

vi
(c)| =

∣∣∣∣∫
T

φ(x) dν(x)−
∫
T

φ(x) dµ(x)

∣∣∣∣ ≤ 2ℓ′+(D) TV(ν, µ) ≤ ϕ′
vi
(c)

2
,
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which implies ϕ̃′
vi
(c) > 0, thus c is ν-sticky and M(ν) = {c}.

Conversely for some ε > 0, we suppose that ∀ν,TV(ν, µ) ≤ ε =⇒ M(ν) = {c}
and we assume for the sake of contradiction that c is not µ-sticky. Since c ∈ M(µ),
c is µ-partly sticky and there exists i with ϕ′

vi
(c) = 0, i.e.,

∫
T
φ(x) dµ(x) = 0 with φ

defined in (5.16). Since ℓ is increasing, ℓ′−(d(c, vi)) > 0 hence φ(vi) < 0. Next, define
the mixture measure ν = (1− ε)µ+ εδvi so that

ϕ̃′
vi
(c) = (1− ε)ϕ′

vi
(c) + εφ(vi) = εφ(vi) < 0 (5.17)

and TV(ν, µ) ≤ ε. By our initial assumption, the closeness of the measures implies
M(ν) = {c}, which contradicts the inequality (5.17).

3. If ℓ is differentiable and ℓ′ is M -Lipschitz, then φ is 2M -Lipschitz. The previous
arguments then readily adapt with the 1-Wasserstein distance.

5.6.3 Proofs for Section 5.4

Proof of Proposition 5.32. Assume for the sake of contradiction that α1 is neither a
vertex nor a point in the support. Then α1 lies in the interior of an edge [v, w], where

[v, α1) ∩M1(µ) = ∅. (5.18)

Since T \supp(µ) is open, so is the intersection (T \ supp(µ))∩(v, w), which contains α1.
Consequently, we can pick some α ∈ (T \ supp(µ))∩(v, α1) that verifies µ ([α, α1]) = 0.
This last equality implies µ(Tα→v) = µ(Tα1→v) and µ(Tα→w) = µ(Tα1→w), thus ϕ′

v(α) =
ϕ′
v(α1) and ϕ′

w(α) = ϕ′
w(α1). Therefore α verifies the same optimality conditions as α1

and we must have α ∈M1(µ). However, by construction α ∈ (v, α1), which contradicts
(5.18). We proceed identically with α2.

Proof of Proposition 5.34. Assume α1 ̸= α2 are elements ofM1(µ). It is easily seen that
T \ Tα1→α2 and T \ Tα2→α1 are disjoint, closed and convex subsets of T . A necessary
optimality condition for α1 is ϕ′

α2
(α1) ≥ 0, which rewrites as µ(T \ Tα1→α2) ≥ 1

2
.

Symmetrically, µ(T \ Tα2→α1) ≥ 1
2

hence µ(T \ Tα1→α2) = µ(T \ Tα2→α1) =
1
2
.

Conversely, assume the existence of such G1, G2. Since T is compact the distance
between subsets d(G1, G2) is positive and attained for some α1 ∈ G1, α2 ∈ G2, i.e.,
d(G1, G2) = d(α1, α2) > 0. Since G1 ⊂ T \ Tα1→α2 and G2 ⊂ T \ Tα2→α1 , we obtain
µ(T \ Tα1→α2) = µ(T \ Tα2→α1) = 1

2
, thus ϕ′

α2
(α1) = ϕ′

α1
(α2) = 0, hence {α1, α2} ⊂

M1(µ).

Proof of Proposition 5.37. 1. G equipped with the induced metric is a metric tree.
By the finiteness assumption on T , the tree G also has finitely many vertices. For
x ∈ T \G, π(x) is clearly among the vertices of G, hence π(T \G) is finite.

2. By [15, Theorem 2.1.12] π is 1-Lipschitz, hence continuous and π#µ is a Borel
measure on T . Given a Borel subset B of T , note that π−1(B) rewrites as the disjoint
union π−1(B ∩ G̊) ∪ ⋃m

i=1 π
−1(B ∩ {vi}), with π−1(B ∩ {vi}) = Ti if vi ∈ B and

π−1(B ∩ {vi}) = ∅ otherwise.
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3. Let α ∈ T \ G and assume w.l.o.g. that α ∈ T1. For any y ∈ G we have the
decomposition d(α, y) = d(α, v1) + d(v1, y), thus

ϕπ#µ(α) =

∫
T

(d(α, v1) + d(v1, π(x))) dµ(x) = d(α, v1)+ϕπ#µ(v1) > ϕπ#µ(v1) = ϕπ#µ(π(α)).

As a consequence, any minimizer of ϕπ#µ lies in G.
4. Fix α ∈ G. We leverage the explicit form of π#µ and we decompose the distance

d(α, x) for x ∈ Ti:

ϕπ#µ(α) =

∫
G̊

d(α, x) dµ(x) +
m∑
i=1

µ(Ti)d(α, vi)

=

∫
G̊

d(α, x) dµ(x) +
m∑
i=1

∫
Ti

(d(α, x)− d(x, vi)) dµ(x)

= ϕ(α)−
m∑
i=1

∫
Ti

d(vi, x) dµ(x).

5. Let α ∈ M1(µ) ∩ G. By 4., α is in argminα∈G ϕ(α) and this set is equal to
M1(π#µ) by 3.

6. By points 3. and 4., M1(µ) = argminα∈G ϕ(α) = argminα∈G ϕπ#µ(α) =
M1(π#µ).

Proof of Lemma 5.41. 1. By Proposition 5.37, M1(π#µ) = M1(µ) = {α⋆}, thus
M1(ν) = {0}.

2. On the event Ωn, α̂n ∈ M1(µ̂n) ∩ [v1, v2] hence α̂n ∈ M1(π#µ̂n), which rewrites
as α̂n ∈ M1

(
1
n

∑n
k=1 δπ(Xk)

)
. On Ωn we have therefore m̂n ∈ M1

(
1
n

∑n
k=1 δYk

)
and

d(α̂n, α⋆) = |m̂n − 0| = |m̂n|.
3. By Theorem 5.27 we have

P(α̂n ∈ {α} ∪ Tα⋆→v1 ∪ Tα⋆→v2) = 1.

The equalities ϕ′
v1
(α⋆) = ϕ′

v2
(α⋆) = 0 rewrite as µ(Tα⋆→v1) = µ(Tα⋆→v2) =

1
2
. Moreover,

0 > ϕ′
α⋆
(v1) = 1− 2µ(Tv1→α⋆) = 1− 2 (µ([α⋆, v1)) + µ(Tα⋆→v2)) = −2µ((α⋆, v1)).

Since P(ϕ̂′
α⋆
(v1) ≤ 0) = P(µ̂n(Tv1→α⋆) ≥ 1

2
) and nµ̂n(Tv1→α⋆) is a sum of n i.i.d.

Bernoulli random variables, each with parameter µ(Tv1→α⋆), the Chernoff bound [66,
Theorem 1 and Example 3] provides

P(ϕ̂′
α⋆
(v1) ≤ 0) ≤

(
2
√
µ(Tv1→α⋆)(1− µ(Tv1→α⋆))

)n
=
(
1− 4µ((α⋆, v1))

2
)n/2 (5.19)

We proceed similarly with v2. Note that P(Ωn) ≥ P(M1(µ̂n) ⊂ [v1, v2]) and perform a
union bound to obtain the claim.

Proof of Theorem 5.43. 1. For each n ≥ 1 let Y(1) ≤ . . . ≤ Y(n) denote the or-
der statistics of the sample Y1, . . . , Yn. It is well-known that the set of real me-
dians M1

(
1
n

∑n
k=1 δYk

)
is the singleton {Y(⌊n

2
⌋+1
)} when n is odd and the interval

[Y(⌊n
2
⌋
), Y(⌊n

2
⌋+1
)] when n is even.
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We follow a similar path as the proof of [233, Theorem 5.10] for real quantiles. Fix
t > 0 and let us determine the limit of P(n1/(2a)m̂n < t). We start with the upper
bound

P({n1/(2a)m̂n < t} ∩ Ωn) ≤ P
({
Y(⌊n

2
⌋
) < t

n1/(2a)

}
∩ Ωn

)
≤ P

( n∑
k=1

1Yk<
t

n1/(2a)
≥
⌊n
2

⌋)
.

Letting Bn =
∑n

k=1 1Yk<
t

n1/(2a)
, Cn = Bn−E[Bn]

V[Bn]
and pn = P(Y < t

n1/(2a) ) we obtain

P({n1/(2a)m̂n < t} ∩ Ωn) ≤ P
(
Cn ≥ ⌊n

2
⌋ − npn√

npn(1− pn)

)
= F−Cn

(
npn − ⌊n

2
⌋√

npn(1− pn)

)
.

(5.20)
Note that limn pn = P (Y ≤ 0) = 1

2
and as n goes to infinity,

pn −
1

2
= P

(
Y ∈ (0, t/n1/(2a))

)
= ∆(t/n1/(2a)) = Ktan−1/2 + o(n−1/2),

therefore
npn − ⌊n

2
⌋√

npn(1− pn)
−−−→
n→∞

2Kta.

By the Lyapunov central limit theorem [233, Example 1.33], Cn converges in distribu-
tion to a standard normal, hence so does −Cn. By Pólya’s theorem [233, Proposition
1.16], supx∈R |F−Cn(x)−Φ(x)| −−−→

n→∞
0 (where Φ denotes the cdf of the standard normal

distribution) and the RHS of (5.20) converges to Φ(2Kta). Moreover P(Ωn) → 0, hence

lim sup
n

P(n1/(2a)m̂n < t) = lim sup
n

P({n1/(2a)m̂n < t} ∩ Ωn) ≤ Φ(2Kta). (5.21)

Now, we turn to the lower bound

P({n1/(2a)m̂n < t} ∩ Ωn) ≥ 1− P
({
Y(⌊n

2
⌋+1
) ≥ t

n1/(2a)

}
∩ Ωn

)
≥ 1− P

( n∑
k=1

1Yk≥ t

n1/(2a)
≥ n

2

)
and by the exact same techniques we find that the RHS converges to Φ(2Kta), thus

lim inf
n

P(n1/(2a)m̂n < t) = lim inf
n

P({n1/(2a)m̂n < t} ∩ Ωn) ≥ Φ(2Kta).

Combining with (5.21) we obtain

∀t > 0, P(n1/(2a)m̂n < t) −−−→
n→∞

Φ(2Kta). (5.22)

Next, fix u > 0 and an integer k ≥ 1. Observe that

lim sup
n

P(n1/(2a)m̂n ≤ u) ≤ lim sup
n

P(n1/(2a)m̂n < u+ 1
k
)

(5.22)
= Φ(2K(u+ 1

k
)a).

Letting k → ∞ yields lim supn P(n1/(2a)m̂n ≤ u) ≤ Φ(2Kua). Furthermore

lim inf
n

P(n1/(2a)m̂n ≤ u) ≥ lim inf
n

P(n1/(2a)m̂n < u)
(5.22)
= Φ(2Kua),
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thus
∀u > 0, P(n1/(2a)m̂n ≤ u) −−−→

n→∞
Φ(2Kua). (5.23)

Finally, fix t ≤ 0 and note that

P({n1/(2a)m̂n ≤ t} ∩ Ωn) = P
( n∑

k=1

1Yk≤ t

n1/(2a)
≥
⌊n
2

⌋)
.

Letting Bn =
∑n

k=1 1Yk≤ t

n1/(2a)
, Cn = Bn−E[Bn]

V[Bn]
and pn = P(Y ≤ t

n1/(2a) ) we have

P({n1/(2a)m̂n ≤ t} ∩ Ωn) ≤ P
(
Cn ≥ ⌊n

2
⌋ − npn√

npn(1− pn)

)
= F−Cn

(
npn − ⌊n

2
⌋√

npn(1− pn)

)
.

Note that limn pn = P (Y ≤ 0) = 1
2

and as n goes to infinity,

1

2
− pn = P

(
Y ∈ (t/n1/(2a), 0)

)
= ∆(t/n1/(2a)) = K|t|an−1/2 + o(n−1/2),

from which we derive the convergence

npn − ⌊n
2
⌋√

npn(1− pn)
−−−→
n→∞

−2K|t|a.

The rest of the proof is similar to what was done for t ≥ 0 and we find

∀t ≤ 0, P(n1/(2a)m̂n ≤ t) −−−→
n→∞

Φ(−2K|t|a). (5.24)

Combining (5.23) and (5.24), n1/(2a)m̂n converges in distribution to a random vari-

able with cdf t 7→ Φ(2Ksgn(t)|t|a), hence to the random variable sgn(Z)
(

|Z|
2K

)1/a
.

2. On the event Ωn, we have the equality d(α̂n, α⋆) = |m̂n|. The convergence
in distribution of n1/(2a)m̂n and the estimate P(Ωn) → 0 are enough to obtain the
claim.

Proof of Corollary 5.44. This is a direct consequence of Theorem 5.43.

Proof of Theorem 5.46. By Theorem 5.27 we have P(α̂n ∈ {α}∪Tα⋆→v1 ∪Tα⋆→v2) = 1.
Next, note that

P(d(α̂n, α⋆) ≥ t, α̂n ∈ {α} ∪ Tα⋆→v1) ≤ 1t≤d(α⋆,v1)P(α̂n /∈ Tγt→α⋆) + 1t>d(α⋆,v1)P(Ωc
n)

≤ 1t≤d(α⋆,v1)P
(
ϕ̂′
α⋆
(γt) ≥ 0

)
+ 1t>d(α⋆,v1)P(Ωc

n).

Furthermore, ϕ′
α⋆
(γt) < 0 and

ϕ′
α⋆
(γt) = 1− 2µ(Tγt→α⋆) = 1− 2µ (Tα⋆→v2 ∪ [α⋆, γt)) = 1− 2(1

2
+∆(t)) = −2∆(t).

Proceeding similarly as in (5.19), we obtain

P(d(α̂n, α⋆) ≥ t, α̂n ∈ {α} ∪ Tα⋆→v1) ≤ 1t≤d(α⋆,v1)

(
1− 4∆2(t)

)n/2
+ 1t>d(α⋆,v1)P(Ωc

n).

A similar bound holds for v2 and this finishes the proof.
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Proof of Proposition 5.47. First, write that P(α̂n /∈ {α⋆} ∪ Tα⋆→v1) =
∑m

j=2 P(α̂n ∈
Tα⋆→vj). For all j = 1, . . . ,m, let Nj = #{k = 1, . . . , n : Xk ∈ Tα⋆→vj} and pj =
µ(Tα⋆→vj). Then, for all j = 2, . . . ,m, Chernoff’s bound [66, Theorem 1 and Example
3] yields

P(α̂n ∈ Tα⋆→vj) = P(Nj ≥ n/2)

= P(Nj/n− pj ≥ 1/2− pj)

≤ (4pj(1− pj))
n/2 .

Therefore,

P(α̂n /∈ {α⋆} ∪ Tα⋆→v1) ≤
m∑
j=2

(4pj(1− pj))
n/2

=
m∑
j=2

4pj(1− pj) (4pj(1− pj))
n/2−1

≤ 4
(
1− 4ε2

)n/2−1
m∑
j=2

pj

≤ 2
(
1− 4ε2

)n/2−1

≤ 2e−nε2 ,

where, in the second to last inequality, we used the fact that p2+. . .+pm ≤ 1−p1 = 1/2,
and in the last inequality, the fact that n/2− 1 ≥ n/4, since n ≥ 4.

Proof of Lemma 5.49. Similar to the proof of Lemma 5.41

Proof of Theorem 5.51. Similar to the proof of Theorem 5.43.

Proof of Theorem 5.53. Similar to the proof of Theorem 5.46.
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Titre : Contributions à la statistique de grande dimension, de dimension infinie et dans les espaces métriques
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sion, Statistique en dimension infinie, Statistique dans les espaces métriques

Résumé : Trois problèmes sont abordés dans cette
thèse: l’inférence en régression multi-tâche de grande
dimension, les quantiles géométriques dans les es-
paces normés de dimension infinie, et les moyennes
de Fréchet généralisées dans les arbres métriques.
Premièrement, nous considérons un modèle de
régression multi-tâche avec une hypothèse de spar-
sité sur les lignes de la matrice paramètre. L’esti-
mation est faite en haute dimension avec l’estima-
teur Lasso multi-tâche. Afin de corriger le biais in-
duit par la pénalité, nous introduisons un nouvel ob-
jet dépendant uniquement des données que nous ap-
pelons matrice d’interaction. Cet outil nous permet
d’établir des résultats asymptotiques avec des lois li-
mites normales ou χ2. Il en découle des intervalles
de confiance et des ellipsoı̈des de confiance, qui sont
valides dans des régimes de sparsité qui ne sont pas
couverts par la littérature existante. Deuxièmement,
nous étudions le quantile géométrique, qui généralise
le quantile classique au cadre des espaces normés.
Nous commençons par fournir de nouveaux résultats
sur l’existence et l’unicité des quantiles géométriques.
L’estimation est effectuée avec un M-estimateur ap-
proché et nous examinons ses propriétés asymp-
totiques en dimension infinie. Quand le quantile
théorique n’est pas unique, nous utilisons la théorie
de la convergence variationnelle pour obtenir des
résultats asymptotiques sur les sous-suites dans la

topologie faible. Quand le quantile théorique est
unique, nous montrons que l’estimateur est consis-
tant pour la topologie de la norme dans une large
classe d’espaces de Banach, en particulier dans
les espaces séparables et uniformément convexes.
Dans les Hilbert séparables nous démontrons des
représentations de Bahadur–Kiefer de l’estimateur,
dont découle immédiatement la normalité asympto-
tique à la vitesse paramétrique. Finalement, nous
considérons des mesures de tendance centrale pour
des données vivant sur un réseau, qui est modélisé
par un arbre métrique. Les paramètres de localisation
que nous étudions sont appelés moyennes de Fréchet
généralisées: elles sont obtenues en remplaçant le
carré dans la définition de la moyenne de Fréchet
par une fonction de perte convexe et croissante.
Nous élaborons une notion de dérivée directionnelle
dans l’arbre, ce qui nous aide à localiser et ca-
ractériser les minimiseurs. Nous examinons les pro-
priétés statistiques du M-estimateur correspondant:
nous étendons le concept de moyenne collante au
contexte des arbres métriques, puis nous obtenons
un théorème collant non-asymptotique et une loi des
grands nombres collante. Pour la médiane de Fréchet,
nous établissons des bornes de concentration non-
asymptotiques et des théorèmes central limite col-
lants.

Title : Contributions to high-dimensional, infinite-dimensional and nonlinear statistics
Keywords : Multi-task regression, Geometric quantile, Fréchet mean, High-dimensional statistics, Infinite-
dimensional statistics, Nonlinear statistics

Abstract : Three topics are explored in this the-
sis: inference in high-dimensional multi-task regres-
sion, geometric quantiles in infinite-dimensional Ba-
nach spaces and generalized Fréchet means in me-
tric trees. First, we consider a multi-task regression
model with a sparsity assumption on the rows of the
unknown parameter matrix. Estimation is performed
in the high-dimensional regime using the multi-task
Lasso estimator. To correct for the bias induced by the
penalty, we introduce a new data-driven object that
we call the interaction matrix. This tool lets us deve-
lop normal and chi-square asymptotic distribution re-
sults, from which we obtain confidence intervals and
confidence ellipsoids in sparsity regimes that are not
covered by the existing literature. Second, we study
the geometric quantile, which generalizes the classi-
cal univariate quantile to normed spaces. We begin
by providing new results on the existence and uni-
queness of geometric quantiles. Estimation is then
conducted with an approximate M-estimator and we
investigate its large-sample properties in infinite di-
mension. When the population quantile is not uni-
quely defined, we leverage the theory of variational

convergence to obtain asymptotic statements on sub-
sequences in the weak topology. When there is a
unique population quantile, we show that the estima-
tor is consistent in the norm topology for a wide range
of Banach spaces including every separable uniformly
convex space. In separable Hilbert spaces, we esta-
blish novel Bahadur–Kiefer representations of the es-
timator, from which asymptotic normality at the pa-
rametric rate follows. Lastly, we consider measures
of central tendency for data that lives on a network,
which is modeled by a metric tree. The location para-
meters that we study are called generalized Fréchet
means: they obtained by relaxing the square in the
definition of the Fréchet mean to an arbitrary convex
nondecreasing loss. We develop a notion of directio-
nal derivative in the tree, which helps us locate and
characterize the minimizers. We examine the statisti-
cal properties of the corresponding M-estimator: we
extend the notion of stickiness to the setting of me-
trics trees, and we state a non-asymptotic sticky theo-
rem, as well as a sticky law of large numbers. For the
Fréchet median, we develop non-asymptotic concen-
tration bounds and sticky central limit theorems.
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